A - 6 4

インテグラル橋梁の試設計と耐震性に関する一考察

Consideration of test design of integral abutment and the seismicity

北海学園大学工学部社会環境工学科	○学生員	白川康平 (Kohei Shirakawa)
北海学園大学工学部社会環境工学科	正員	杉本博之 (Hiroyuki Sugimoto)
北武コンサルタント(株)	正 員	渡邊忠朋 (Tadatomo Watanabe)
北武コンサルタント(株)	正 員	阿部淳一 (Junichi Abe)

1. はじめに

近年,上・下部工一体型の橋梁形式であるインテグラ ルアバット橋が採用され始めている.従来の橋梁では, 支承・伸縮装置の劣化や損傷が起きやすく,破損した箇 所から雨水が浸入し,支承や伸縮装置周辺の劣化の大き な要因となっている.このような支承や伸縮装置周辺の 劣化,損傷は多く見られ,維持管理の課題となっている. しかし,インテグラルアバット橋は,支承・伸縮装置を 必要としないため,上記のような維持管理費用を低く抑 えられることが可能と考えられる.

一方,インテグラルアバット橋の耐震設計では,既 往の被災事例などにより,レベル1地震動に対して耐震 性能1の照査を行えば,レベル2地震動の照査は省略し てよいとされている¹⁾.しかし,この構造形式は周辺 の地盤と一体となり挙動する構造物であるためレベル2 地震時には,複雑な挙動となることが想定される.

そこで本研究ではこのインテグラルアバット橋の,レベル2地震時での挙動を確認することを目的とし,解析的な検討を試みた.

2. 検討概要

本論文の検討概要のフローを図-1 に示す. 図のよう に本論文では、まずインテグラルアバット橋の設計条件 を設定する.設計条件の設定にあたっては,実在構造物 の条件をもとに設定した.次に常時およびレベル1地震 動の照査により,断面諸元を決定する.そして,この決 定された断面諸元により本論文の目的である,レベル2 地震動の検討を行う.

常時およびレベル1地震動の照査においては,静的解 析により行う¹⁾.レベル2地震動の検討においては, 地盤との動的相互作用を考慮した非線形時刻歴動的解析 を行う.

3. 設計条件

本論文で対象とした構造一般図および土質柱状図を図 -2 に示す.本構造形式は図のように上下部工を一体化 させたインテグラルアバット橋とした.本橋梁はスパン 19m, A1 橋台の高さ 7.5m, A2 橋台の高さ 7mである. 本橋梁の設計条件を以下に示す.

①適用基準

適用基準は道路橋示方書・同解説^{2) 3) 4)}および、インテグラルアバット構造の設計・ガイドライン(案)
¹⁾とした。

② 適用材料

使用材料は、コンクリートの設計基準強度 f'_{ck} =27N/mm²,鉄筋の降伏強度 f_{sy}=345N/mm²とした.また、 鋼管杭は SKK400 とした.

③地盤条件

図-2 のように A1 および A2 橋台で土質条件が異な る. 土質条件は,中間層にシルトを含んでいる層があり, 橋梁の支持層は,深度 17m 付近の砂質土(N 値 50 以 上)である.また,橋台背面は埋め戻し土とし,N 値 5 の砂質土とした.各土層の詳細を表-1に示す. ④基礎形式

基礎形式は鋼管杭基礎とし, 杭長は A1 および A2 橋 台で 17.5mとした.

4. 断面諸元の設定

上記のように本論文では、まず既往の技術基準をもと に常時およびレベル1地震動に対して設計を行い、断面 諸元を決定した.以下にその詳細を示す.

(1) 解析モデル

解析モデルを図-3 に示す.図のように本論文では, 2 次元骨組みモデル化とした.上部工,下部工,鋼管杭 の各部材は、断面高さ程度に要素分割した.地盤バネは, 分布バネとしてモデル化した.なお,橋台背面の地盤は 受働抵抗のバネとしてモデル化した⁵⁾.各要素の断面 定数を表-2に示す.なお,隅角部は剛域とした.

(2) 荷重ケース

荷重は死荷重・土圧・活荷重・地表載荷荷重・温度 荷重・地震地震時慣性力・地震時主働土圧で,これらを 組み合わせた荷重を橋梁本体に載荷する.本論文では常 時土圧を主働土圧および受働土圧とした.

(3) 部材の決定

各部材の断面諸元の決定根拠を以下に示す.

i)上部工の決定

表-3 に上部工の照査が最も厳しい結果となった照査 値を示す.照査は曲げ,せん断ともに常時の荷重ケース で決定した.曲げに対する照査では,負の曲げモーメン トに対しては橋台前面が最も厳しい結果となった.また 正の曲げモーメントはスパン中央で最も厳しい結果とな った.

ii) 鋼管杭の決定

鋼管杭の杭径は、一本の杭の軸方向許容押込み支持力 (以下 R_a)により決定した.インテグラルアバット橋 の特徴として、杭は単列配置である.したがって、下部 工の幅から杭径 1mの鋼管杭を用いると4本配置するこ

表-1 土質定数

地質 区分	層厚 [m]	N値	単位体積 重量 [kN/m3]	粘着力 [kN/m2]	内部 摩 擦角 <i>φ</i> [゜]	変形係数 [kN/m2]	平均せん 断弾性 波速度 Vsi[m/s]
シルト	8.35	3	14	18	0	8400	144
砂礫	4.15	12	17	0	29	33600	183
シルト	2.90	3	17	17	0	8400	144
砂礫	1.20	50	20	0	36	140000	295
砂	4.50	50	17	0	35	140000	295

表-2 断面諸元

部材箇所	A[m ²]	I[m ⁴]	$E[kN/mm^2]$
上部工	6.48E+00	6.97E+01	25
下部工	2.14E+01	2.04E+02	25
鋼管杭	4.98E-01	1.52E-02	200

表-3 上部工の照査一覧

		曲げ	せん断照査	
断面力	M[kN-m]	-8654.144	4918.323	-8589.183
	S[kN]	-2569.258	4.183	-2896.76
	N[kN]	-1581.311	-1171.298	-1562.866
照査結果	箇所	上側	下側	
	曲げを受ける部材 の照査	0.83	0.91	0.83
	せん断を受ける照 査	0.83	0.01	0.92

とができ、 R_a =2140kN となる. なお、杭径 0.8m の鋼管 杭を用いると5本配置することができ、 R_a =1370kN とな る. 設計軸力は 6600kN のため、杭径 0.8m の杭径では 上記の軸力を支持するには、許容値付近なので杭径 1m の鋼管杭を採用した.

iii)下部工の決定

インテグラルアバット橋は、一般的に別途フーチング を設けないため、下部工の断面幅の最小値は杭径により 決定される.本論文では杭径 lm の鋼管杭を適用したの で、下部工の幅は 2m をとらなければならない.そのた め下部工の配筋は断面力照査では決定されず、最小鉄筋 量によって決定した.せん断補強筋についても、コンク リートのみでせん断に対して抵抗できるので最小鉄筋量 を配置した.

上記のように決定した,各断面の諸元を図-4 に示す. 決定した断面諸元を用いて,次節でレベル2地震動の検 討を行う.

5. レベル2地震動の解析

インテグラルアバット橋での耐震設計は、インテグラ ルアバット構造の設計・ガイドライン(案)に示す適用 範囲であればレベル2地震動を省略してよい.しかし、 本論文では動的解析を用いてレベル2地震動に対する検 討を行った.

(1) レベル2 地震動の部材モデル化

解析モデルを図-5 に示す.図のように躯体に関して は常時およびレベル1地震動の解析モデルと同様である. レベル2地震動では、地盤との動的相互作用を考慮する ため、地盤をせん断バネとしてモデル化する土柱モデル としている.

上部工と下部工には、降伏や部材の損傷による非線形 性を考慮し、鋼管杭は線形とした.上部工および下部工 の非線形性はモーメントー曲率関係(以下 $M - \phi$ 関係)とした.上・下部工の $M - \phi$ 特性は、図 - 6に示す トリリニア型の骨格曲線とした.

地盤と杭基礎間のバネは線形バネとした.一方,埋 め戻し土である橋台背面と地盤間のバネは図-7 に示す バイリニア型のバネとした.なお,この橋台背面と地盤 間のバネは受働側のみ抵抗するものとして設定した.土 柱は線形のせん断バネとしてモデル化した.

(2) 解析方法

解析は、時刻歴動的解析とした.解析方法はニューマ ークβ法とし、積分時間間隔は 0.001sec とした.減衰 定数の種類は Rayleigh 型を適用し、それぞれの部材の 減衰定数は、上・下部工が 2%、鋼管杭が 1%とした. また、地盤バネは 10%とした.各次のモード減衰定数 を求めたあと、Rayleigh 減衰の 2 つのパラメータを与え た.

(3) 入力地震波形

時刻歴動的解析には、土柱バネ下端より地震動を橋軸 方向に入力した.地震波は、道路橋示方書より、図-8 に示すⅡ-I-1の地震波を用いた.

(4) 解析結果

上部工の橋台前面,下部工の基部および天端での最大 曲げモーメント発生時の変形について着目し,静的解析 の結果と動的解析の結果を比較する.

表-4 にそれぞれの部材での最大の曲げモーメントと, その発生時刻を示す.表のように各最大曲げモーメント 発生の時刻はそれぞれ異なっていることがわかる.図-

図-4 断面図

図-7 橋台背面一地盤間のバネモデル

10~12 には最大曲げモーメントとなった時刻の変位図 を示す.また、参考として図-9 には静的解析における レベル1地震動の照査時の変形図を示す.図を比較する と上部工と下部工の天端での変位は、静的解析における 変形図と同様である.一方、図-12 に示す下部工の基 部(部材 201)着目時の変位図は、静的解析における変 形図とは全く異なる結果となっている.これは、必ずし もレベル2 地震時の変形は静的解析で想定しているよう な変形とはならず、場合によっては適切にレベル2 地震 動の検討を行う必要性が示された結果と考えられる.

t	10 to a Ale Manual Ale have a Ale and the Asymptotic and the Asymptoti	
	sel	間 (。)

表-4 最大曲げモーメントの発生時刻

部材の箇所	部材番号	STEP	曲げモーメント [kN・m]
上部工中央	120	1045	-26080
下部工天端	204	604	-29766
下部工基部	201	748	-40305

図-9 静的解析における変形図

図-12 下部工基部の変形図

6. まとめと考察

本論文では、インテグラルアバット橋を対象に、常時 およびレベル1地震動の設計を行い、これに対してレベ ル2地震動の検討を行った.

動的解析において得られた変形を静的の結果と比較す ると、上部工および下部工天端での変形は、静的解析の 結果と同様になった.一方、下部工基部の変形は静的解 析の結果と異なるものとなった.これは、必ずしもレベ ル2地震時の変形は静的解析で想定しているような変形 とはならず、場合によっては適切にレベル2地震動の検 討を行う必要性があることを示す結果であると考えられ た.

参考文献

- 土木研究所,鋼管杭・鋼矢板技術協会,プレストレ スト・コンクリート建設業協会,日本橋梁建設協会, 建設コンサルタンツ協会:インテグラルアバット構 造の設計・ガイドライン(案),2012.
- 2)日本道路協会:道路橋示方書・同解説 Ⅲコンクリート橋編,2012.
- 日本道路協会:道路橋示方書・同解説 IV下部構造 編, 2012.
- 日本道路協会:道路橋示方書・同解説 V耐震設計 編, 2012.
- 5)海洋架橋・橋梁調査会:季節橋梁の耐震補強工法事 例集,2005.