複数の制震ダンパー有する構造物の遠隔・低温域サブストラクチャ ハイブリッド地震応答解析のためのデスクトップ実験

A desktop simulation for remote and low-temperature sub-structured hybrid seismic simulation of structure with multiple dampers

北見工業大学大学院社会環境工学専攻 北見工業大学社会環境工学科 北見工業大学社会環境工学科 北見工業大学社会環境工学科 北見工業大学社会環境工学科 〇学生員 齋藤樹里 (Juri Saito)
正 員 宮森保紀 (Yasunori Miyamori)
正 員 山崎智之 (Tomoyuki Yamazaki)
正 員 三上修一 (Shuichi Mikami)
正 員 齊藤剛彦 (Takehiko Saito)

1. はじめに

1995年の兵庫県南部地震以降,従来の耐震構造に加 えて免震構造を採用する橋梁が増えており,それに伴い 免震・制震デバイスの研究開発が盛んに行われている¹⁾. 一方,ゴム支承や制震ダンパーなどは一般に温度依存性 を有することが多い.北海道や東北などの寒冷地では, こうしたデバイスの環境による影響を考慮する必要があ ると考えられる.

構造物の地震時挙動を把握するための手法としては, 大型の振動台を用いて構造物を実際に振動させる動的載 荷実験,コンピュータ上に構造物を数値モデル化して地 震時挙動を把握する数値解析が挙げられる.しかし,振 動台実験では毎回実物大の供試体を製作するには費用が 掛かり過ぎるうえに,橋梁などの大型構造物の場合には 依然として規模の制約がある.数値解析では,非線形部 材や温度依存性のある部材など,復元力が複雑な要素を 含む構造物においては結果の精度が低下してしまうなど の問題点が挙げられる.そこで,これらの問題を解決し 得る新たな手法として,構造実験と数値解析を併用する サブストラクチャハイブリッド実験が認知され,数多く の研究がなされている^{2),3)}.

著者らは、これまでに小型バネを用いたデスクトップ 型ハイブリッド実験システム、実大の制震ダンパーを用 いた低温域ハイブリッド実験システム⁴⁾を構築し、これ らの実験システムを段階的に用いる実験環境⁵⁾を構築し た.段階的な実験システムを構築することで、実験の効 率化および安定性の向上が可能である.例えば、ハイブ リッド実験の構造実験部分に用いる非線形部材や温度依 存性のある部材に対して、設定上の問題やトラブルによ って予期しない変位が与えられてしまった場合に供試体 を破壊してしまう恐れがある.また、何らかの理由で実 験が中断してしまった場合に、温度依存性のある部材で は実験前の温度に戻すために時間を要するという問題が ある.そこで、供試体の代わりにダミーとなる部材を用 いた卓上規模の実験を行うことで、事前に数値モデルや システムの安定性を繰り返し検証できる.

これまでに構築した実験システムでは、構造実験部分 が1箇所である.したがって、例えば制震ダンパーを取 り付けた橋梁の解析では、1箇所のみダンパーを取り付 けた構造となる.より現実に即した検討のためには、複 数のダンパーなどを有する構造物に対応させるための実 験システムを構築する必要がある.このような複数ノー ドを用いる実験では,実験設備の制約がある.そこで外 部の実験設備とネットワークを築き,遠隔・低温域のハ イブリッド実験を行うためのシステムの構築を目指す.

今回の実験は、今後複数のダンパーを有する構造物の 遠隔・低温域サブストラクチャハイブリッド実験を行う ための予備的検討として、構造実験部分を2箇所に増や したシステムの動作確認を行う.

2. サブストラクチャハイブリッド実験システム

2.1 ハイブリッド実験の概要

本研究では、NEES (George E. Brown, Jr. Network for Earthquake Engineering Simulation) プロジェクトの一環 として、イリノイ大学で開発された分散型サブストラク チャ仮動的実験用ソフトウェア UI-SIMCOR⁶⁰を用いて いる. UI-SIMCOR では統括プログラム(Simulation Coordinator: SC)を中心に、モデルを構造実験を実施する 部分と数値解析を行う数値モデル部分に分割して応答計 算を行う.構造実験部分では MATLAB により構造実験 装置を制御するプログラムを作成し、供試体の応答を測 定する.数値解析部分では MATLAB に汎用構造解析ソ フト TDAPIII⁷⁷バッチ版の静解析プログラムを組み込む ことで解析を行う.

実験は SC によって制御され,まず以下の設定を読み 込む.

- ・地震応答解析における入力地震動や積分パラメータ, 時間刻みと計算ステップ数
- ・構造モデル全体に関する節点質量とレーリー減衰マト リクスに必要な固有周期と減衰定数
- ・分散化した構造要素(モジュール)の IP アドレスと通 信プロトコル,各モジュールの節点と自由度の配置

・初期剛性を求める際に入力する変位量と回転角

設定を読み込み,システムを初期化した後,次の手順で ハイブリッド実験は行われる.

- 1. モジュールとの接続の確立
- 2. 初期剛性マトリクスの作成
- 3. α-OS 法によるハイブリッド実験の実行
- 4. モジュールとの接続の解除 UI-SIMCOR ではネットワーク上の各モジュールと TCP/IP

接続で通信を行い,変位や断面力の情報の交換は LabView2 プロトコルを用いる. SC に対して各モジュールを 代表するものが構造計算制御プログラムや実験制御プログ ラムである.

2.2 デスクトップ型ハイブリッド実験システム

本研究では、2003 年に NEES プロジェクトとして米 イリノイ大学や米コロラド大学を中心に行われたサブス トラクチャ仮動的実験手法を取り入れた構造実験 MOST (Multi-Online Simulation Test)⁸⁾の縮小版として公 開されている Mini-MOST システム ⁹を参考に、卓上規 模のハイブリッド実験システムを構築している.図-1 にシステムの構成を示す.3つのコンピュータと図-2に 示す構造実験部分によって構成される.構造 A では数 値解析が妥当な桁部分の要素を対象とし、構造 B およ び構造 C では構造実験が妥当なダンパーなどの要素を 対象とする.ただし、この実験システムでは数値モデル 化の検討や新たに作成したプログラムなどの動作確認を 繰り返し行うことを目的としている. そのため、構造 B は実際のダンパー供試体のダミー部材として、線形で温 度依存性のない小型のバネを,構造 C では入力変位に バネ定数を乗じて、バネ反力を計算する数値バネとする. 相似比は、一軸圧縮引張のバネと考えればバネ定数のみ で表すことができる.

構造実験は幅 750mm, 長さ 1050mm, 高さ 10mm の アクリルプレート上で行われる.まずコンピュータ3が 受け取った命令変位に対して,汎用マイコン基盤 ArduinoUNO¹⁰⁾とステッピングモータ用ドライバ IC を介 し,ステッピングモータにより小型バネに変位を与える. その後バネの変位と荷重を LVDT 変位計とロードセル によって取得し, DAQ ボードを通してコンピュータ 3 へ送る.

実験システムの流れは、まずコンピュータ1では統括 プログラム SC が各構造へ同時に命令変位を送る.構造Aに 対する構造計算制御プログラムでは、命令変位に対して TDAPIIIバッチ版静解析を実行し、桁部分の応答変位と復元 力を得る.コンピュータ2では命令変位に対して適当な数値 Kを乗じることでバネ定数Kの線形バネを再現し、応答変位 と復元力を得る.コンピュータ3では、命令変位に対して構 造実験を行いバネ供試体の応答変位と荷重を得る.これら3 つのコンピュータの制御を同時並行に行い、その後SC が各 構造から変位と復元力を受け取り、応答計算を行う.

構造実験部分の遠隔配置については、本研究では以前 に通信経路による通信処理速度の変化が実験に与える影 響について検討¹¹⁾を行っており、温度依存性に加えて 速度依存性を有するデバイスの実験においては通信処理 速度が重要な課題となっている.また、学外施設の構造 実験ノードとの通信ネットワーク構築においては、ファ イアウォールの設定などが障害となる.そこで、今後の 検討としては VPN によるデータ通信を用いることで、 比較的容易に学外との安定した通信を構築できると考え ている.

3. 2 つのバネ部材を有する単純桁モデルのハイブリッ ド実験

3.1 単純桁モデル

本実験では、図-3 に示す解析モデルを用いる.両端 をバネ支承で支持した1径間のはりにバネ部材と数値バ

図-1 デスクトップ型システムの構成

図-2 構造実験部分

図-3 解析モデル

ネを取り付けた単純桁モデルとなっており,バネ支承と ダンパーを有する構造を想定している.バネ支承と桁部 分,数値バネは数値モデルであり,バネ部材は実部材で ある. x 軸が橋軸方向, y 軸が鉛直方向に対応しており, 本研究では橋軸方向の応答に着目する.

図-3 の桁部材上の黒丸と白丸は節点を表しており, 節点 18 と 19 は完全固定, 1-17 は x 軸方向と y 軸方向 および回転方向に自由度を設けている.また,黒丸の各 点には質量 133.55×10³kg を設定する. TDAPIIIモデル では,白丸と黒丸の節点情報を持っており,SC では黒 丸の節点を Control Point とし,節点自由度に対して命令 と応答のやり取りを行う.

節点3には実験供試体であるバネ部材を接続している. 図-4にバネ部材を示す.WAKI社のSR-2019で,材質は クロメート鋼線,線径 1.2mm,外径 17mm,自由長 28mm,密着高さ9.6mm,バネ定数0.021N/mmである. 一般には圧縮と引張の両方の性能を満たすバネがないため,圧縮バネ2つを治具ではさみそれぞれを圧縮側と引 張側に対応させている.これにより,正負どちらの方向 に動作しても同じ復元力を得る事ができる.また,構造 実験により得られたバネの反力に38.095×10³を乗じる ことでバネ定数800kN/mのバネ部材を再現し,桁上の 節点2に挿入する.

節点 15 には数値バネを接続している. バネ定数は 800kN/m と設定し, バネの反力を桁上の節点 8 に挿入 する.

桁部分とバネ支承は汎用構造解析ソフト TDAPIIIによ りモデル化しており,表-1 に部材の諸元を示す.節点 1-17 は鋼製桁で弾性係数 2.0×10¹¹N/m, ポアソン比 0.3 の線形部材である.

表-2 に減衰の設定を示す.減衰マトリクスは,事前 に固有振動解を行い 0.905Hz に橋軸方向の有効質量比が 大きいモードを確認しており,レーリー減衰としてこの 卓越モードに対して減衰定数を 0.05 とする.

3.2 時刻歴応答解析

本実験では,汎用構造解析ソフト TDAPIIIの動解析に よる時刻歴応答変位とハイブリッド実験による時刻歴応 答変位の比較を行い,実験システムが適切に動的応答を 計算していることを確認する.

図-5 に実験に用いる地震波を示す.最大加速度 318gal の ElCentro 波で,モデル橋軸方向に 1/10 倍で入 力する.積分時間間隔は 0.01 秒刻みで 30 秒間解析を行 う. TDAPIIIでは Newmarkß を用いており, β =0.25 であ る. ハイブリッド実験では α -OS 法 ¹²⁾を用い, パラメー タを α =0, β =1/4, γ =1/2 とすることで Newmarkß 法と一 致する値とした.

4. 結果と考察

図-6 に TDAPIII動解析とハイブリッド実験の各モデル における節点 1 の時刻歴応答変位を,図-7 に数値バネ とバネ供試体の変位-荷重の関係を示す.図-6 より,両 波形ともに変位の増減が入力地震波である ElCentro 波 の傾向と類似していることから入力地震波の応答となっ ていると考えられる.卓越振動数はおよそ 0.905Hz であ

図-4 小型バネ供試体

表-1 部材の諸元

部材	断面積	断面2次モーメント
	$A[m^2]$	$I[m^4]$
桁	10.164	Z 軸:0.6076
バネ支承	バネ定数(橋軸方向) : 1.174×10 ⁶ N/m	

表-2 減衰の設定

Reyleigh 減衰		
第一基準振動周期	1.1049(sec)	
減衰定数	0.05	
第二基準振動周期	1.1037(sec)	
減衰定数	0.05	

り,最大変位は TDAPIII動解析が 9.70×10⁻³m,ハイブ リッド実験が 9.71×10⁻³m となっており,0.01mm の差 が生じている.また振幅の小さい 17 秒付近では変位の 差が大きくなっている.これについては図-7 で示され るように,バネ供試体から得られた変位-荷重の関係に ばらつきがあることが影響していると考えられる.この ばらつきに関しては,構造実験装置の分解能による誤差 や小型バネの取り付け方法によるものと考えられる.ま た,小型のバネを 800kN/m のバネ部材に相当するよう 係数を乗じて変換したため,その分誤差が顕著に現れた と考えられる.

構造実験部分が増えた場合や、復元力の大きいデバイ スを用いた場合はさらに TDAPIII動解析とハイブリッド 実験の誤差が大きくなると予想されるが、デスクトップ 型ハイブリッド実験システムは事前にプログラムやモデ ル化の問題解決のための動作確認ツールであるというこ とを考慮すれば、十分な精度で動的応答を再現できてい ると考えられる.

5. おわりに

本研究では、これまでの実験システムの構造実験部分 を2箇所に増やし、複数のダンパーを有する構造物の遠 隔・低温域サブストラクチャハイブリッド実験を行うた めの予備的実験を行った.

複数の構造実験部分を有する実験システムの動作としては,汎用構造解析ソフト TDAPIII動解析と比較した結果十分な精度が得られた.

今後は複数のダンパー供試体を有する構造物における 遠隔・低温域サブストラクチャハイブリッド実験を行う 予定である.

謝辞:本研究の一部は科学研究費補助金 若手研究(B) (課題番号 18760341)により実施しました.研究の開 始に際してはイリノイ大学アーバナシャンペイン校の B.F Spencer Jr.教授,ジョンズ・ホプキンス大学の中田 成智助教授から貴重な助言をいただきました.

参考文献

- 財団法人土木研究センター:わが国の免震橋事例集, 2011.
- 家村浩和:ハイブリッド実験の発展と将来,土木学 会論文集,第356号,pp1-10,1985.
- Victor Saouma and Mettupulayam Sivaselvan.: Hybrid Simulation: Theory, Implementation and Applications, Taylor & Francis, 2008.
- 4) 宮森保紀,湯村美紀,藤生重雄,樋口匡輝,山崎智之, 三上修一,大島俊之:汎用構造解析ソフトを利用した低 温環境下における仮動的実験システムの構築,土木学 会論文集 A1(構造・地震工学), Vol. 68, No. 4(地震工 学論文集第 31-b 巻), I_608-I_616, 2012.
- 5) 宮森保紀,齋藤樹里,山崎智之,三上修一,齊藤剛 彦:低温域サブストラクチャ・ハイブリッド地震応 答解析のための段階的実験環境の構築,土木学会北 海道支部平成24年度論文報告集第69号,A-54,2012.
- Oh-Sung Kwon, Amr. S. Elnashai, and Billie F. Spencer: UI-SimCor, http://nees.org/resources/3363, 2011.
- 7) 株式会社アーク情報システム:TDAPⅢ, 2011. http://www.ark-info-sys.co.jp/jp/product/tdap/index.html
- 8) Billie Spencer Jr, Thomas A Finholt, 他 11 名: Neesgrid: A Distributed Collaboratory For Advanced Earthquake Engineering Experiment And Simulation, 13thWorld Conference on Earthquake Engineering Vancouver,B.C,Canada, Paper No.1674, 2004.
- Nakata Narutoshi, Guangquiang Yang, Billie Spencer Jr.: System Requirements for Mini-MOST Experiment, http://www.neesgrid.org/mini
 - most/Mini_MOST_requirements_revised3.pdf
- 10) Arduino-HomePage, http://www.arduino.cc/
- 11) 宮森保紀, 坪田豊, 岩上隆志, 青山圭介, 平沢秀之: 遠

図-7 バネの変位-荷重 (ハイブリッド)

隔サブストラクチャ仮動的実験の通信処理速度に関する 一考察,鋼構造年次論文報告集,第16巻,pp.313-316, 2008.

12) 中島正愛,赤澤隆士,阪口理:実験誤差制御機能を 有したサブストラクチャ仮動的実験のための数値積 分法,日本建築学会構造系論文報告集,第454号, pp.61-71,1993.