シート目付量を変化させた AFRP シート曲げ補強 RC 梁の重錘落下衝撃実験

Impact loading tests on RC beam reinforced with various volume of AFRP sheet

室蘭工業大学大学院	\bigcirc	正会員	栗橋	祐介 (Yusuke Kurihashi)
(独) 寒地土木研究所		正会員	今野	久志 (hisashi konno)
三井住友建設 (株)		フェロー	三上	浩 (Hiroshi Mikami)
釧路工業高等専門学校		フェロー	岸	徳光 (Norimitsu Kishi)

1. はじめに

近年,既設鉄筋コンクリート (RC)構造物の静的耐力向 上法として,連続繊維 (FRP)シート接着工法が広く採用さ れるようになってきた.一方で,最近では既設の耐衝撃用 途構造物の経年劣化や耐力不足も報告されており,衝撃 荷重に対する耐力向上法の確立も急務となっている.著 者らは,これまで耐衝撃用途 RC 構造物の耐衝撃性向上法 として FRPシート接着工法を提案している.また,FRP シートには耐衝撃性に優れるアラミド繊維製 FRP (AFRP) シートを採用することとし,その適用性についても検討 を行っている¹⁾.

既往の著者らの研究では、AFRPシート曲げ補強により RC 梁の耐衝撃性が向上することや、静載荷時にはシート 剥離によって終局に至る RC 梁が衝撃荷重載荷時にはシー ト破断によって終局に至ることなどを明らかにしている. しかしながら、これらの知見は限定された目付量に対し ての結果であり、目付量が異なる場合等詳細な検討を行 うまでには至っていない.

このような背景より、本研究では、AFRPシートで曲げ 補強した RC 梁の耐衝撃挙動に及ぼすシート目付量の影響 を検討することを目的に、既往の研究よりも目付量が大 きい AFRP シートを用いて補強した RC 梁の衝撃荷重載荷 実験を行い、その影響について検討を行った。

2. 実験概要

表-1には、本実験に用いた試験体の一覧にして示している.表中,試験体名の第1項目は補強の有無(N:無補強,A:シート補強),第2項目は載荷方法(S:静的,I:衝

撃),第3項目のHに付随する数値は落下高さ(m)を示している.また,表には本実験に用いた各試験体のコンクリート強度および主鉄筋の降伏強度も併せて示している.

衝撃荷重載荷の場合には,質量 300 kg,先端直径 200 mm の鋼製重錘を所定の高さから一度だけ自由落下させる 単一載荷方法により実験を行っている. 重錘落下位置は 梁のスパン中央部であり,試験体の両支点部は回転を許 容し,浮き上がりを拘束するピン支持に近い構造である.

静載荷の場合には、梁幅方向に 200 mm, スパン方向に 100 mm の鋼製載荷板を梁のスパン中央部に設置し,油圧 ジャッキを用いて荷重を作用させた.また、衝撃荷重載 荷実験において,終局状態は残留変位量が梁の純スパン 長の2%に達した状態になるか,またはシートが剥離も しくは破断した状態と定義している.

図-1には、試験体の形状寸法と配筋および補強状況を示している。本実験に用いた試験体の形状寸法(梁幅× 梁高×純スパン長)は200×250×3,000mmであり、軸 方向鉄筋は上下端にD19を各2本配置しており、梁端面 に設置した厚さ9mmの定着鋼板に溶接している。また、 せん断補強筋にはD10を用い、100mm間隔で配筋してい る。AFRPシートは梁底面の補強範囲にブラスト処理を施 し、エポキシ系プライマーを塗布し指触乾燥状態である ことを確認の後、エポキシ系含浸接着樹脂を用いて接着 を行っている。養生は気温が20°程度の環境で7日間以上 行った。

表-2には、本実験で用いた AFRP シートの力学的特性 値を示している.本実験の測定項目は、載荷荷重、スパン 中央点変位(以後,変位)およびシート各点の軸方向ひず

試験体名	補強の 有無	載荷 方法	計算 曲げ耐力 (kN)	計算 せん断耐力 (kN)	せん断 余裕度	落下 高さ <i>H</i> (m)	入力 エネルギー <i>E</i> (kJ)	コンクリート 圧縮強度 (MPa)	主鉄筋 降伏強度 (MPa)
N-S		静的				-	-		
N-I-H2.0	無	術戦	50.2	283.5	5.65	2.0	5.9	23.4	358.1
N-I-H2.5		周手				2.5	7.4		
A415-S		静的				-	-		
A415-I-H2.0	右		73 7	283.5	3.85	2.0	5.9	23.4	358 1
A415-I-H2.5	EI.	衝撃	15.1	265.5	5.65	2.5	7.4	23.4	556.1
A415-I-H3.0						3.0	8.8		
A830-S		静的				-	-		
A830-I-H2.0	右		08.2	283.5	2.80	2.0	5.9	32.0	368.6
A830-I-H2.5	EI.	衝撃	90.2	205.5	2.09	2.5	7.4	52.0	508.0
A830-I-H3.0						3.0	8.8		

表-1 試験体一覧

図-1 試験体の形状寸法, 配筋および補強状況

24 4		1.0773	- H 3 1 4 1		
目付量 (g/m ²)	保証 耐力 (kN/m)	設計厚 (mm)	引張 強度 (GPa)	弾性 係数 (GPa)	破断 ひずみ (%)
830	1,176	0.572	2.06	110	1 75
415	588	0.286	2.00	110	1.75

表-2 AFRP シートの力学的特性値(公称値)

みである.また、実験時には、RC 梁のひび割れや AFRP シートの剥離および破断状況を撮影している.

3. 実験結果および考察

3.1 静載荷実験結果

図-2には, RC 梁の荷重-変位関係に関する実験結果 を計算結果と比較して示している.計算結果は土木学会 コンクリート標準示方書²⁾に準拠して各材料の応カ-ひ ずみ関係を設定し,コンクリートとシートの完全付着を 仮定して断面分割法により算出した.

図より,各試験体の耐荷性状は,主鉄筋降伏時までは補 強の有無によらず,ほぼ同様であることが分かる.一方, 主鉄筋降伏後において,無補強の場合には荷重がほとん ど増加しないのに対し,曲げ補強した場合には剛性勾配 が大きくなるとともに,最大荷重も増加している.この ような傾向は,シート目付量が大きいA830-S 試験体の場 合に顕著である.

また,実験結果と計算結果との比較から各試験体の破 壊形式は,A415-S 試験体の場合には実測荷重が計算耐力 を上回り上縁コンクリートが圧壊した後シートが剥離し ていることから「曲げ圧壊型」,A830-S 試験体の場合には 実測荷重が計算耐力を下回る状況でシートが剥離して終 局に至っていることから「剥離破壊型」に分類される.

3.2 衝擊荷重載荷実験結果

(1) 各種時刻歴応答波形

図-3には、全試験体の各種時刻歴応答波形を示している.図-3(a)より、重錘衝撃力波形は、試験体によらず振幅が大きく継続時間が1ms程度の第1波に振幅が小さい第2波目が後続する性状を示していることが分かる.また、最大振幅はいずれの試験体も1,200kN程度でありほぼ同等である.

図-3(b)より,支点反力は継続時間が40~50ms程度 の主波動に継続時間の短い高周波成分が合成された性状 を示していることが分かる.最大振幅は、シート目付量 の大きいA830-I試験体の場合が最も大きい.また、主波

図-2 荷重-変位関係

動継続時間は無補強の場合よりも曲げ補強した場合が小 さいものの、シート目付量による違いは見られない。

図-3(c)より,載荷点変位は,いずれの試験体において も最大振幅を示す第1波が励起した後,減衰自由振動状態 に至っていることが分かる.また,落下高さH=3.0mの 場合を除き,最大振幅およびその周期はシート目付量の大 きいA830-I 試験体の場合が最も小さい.これは,A830-I 試験体の曲げ剛性が最も大きいことによるものと考えら れる.なお,落下高さH=3.0mにおいてA415/830-I 試験 体の載荷点変位波形がほぼ同様の性状を示しているのは, 経過時間10ms程度においてシートが破断したため,無 補強と類似の挙動を示したことによるものと考えられる.

以上のことから, AFRP シート曲げ補強を施すことによ り, 衝撃荷重載荷時の変形量を抑制できることや, その 効果はシート目付量の増加に伴って増大することが明ら かになった.

(2) 変位分布性状

図-4および図-5には、それぞれ各試験体の最大載 荷点変位発生時の変位分布および残留変位分布を落下高 さごとに整理して示している.なお、H=3.0mの場合に は、シートが破断して無補強と同様の状況となっている ため、ここでは示していない.

最大載荷点変位発生時の変位分布より、いずれの試験 体においても落下高さが大きいほど変位量も大きくなる ことが分かる.また、同一落下高さにおけるA415/A830-I 試験体の変位量は、無補強試験体の場合に比較してそれぞ れ25 および40%程度抑制されていることが分かる.こ

のような傾向は、残留変位分布においても同様に認めら れるが、無補強試験体との差異は残留変位の方が顕著で あり、残留変位の抑制効果が明瞭に現れている.これは、 AFRPシートが完全弾性体に近い特性を有していることよ り、除荷状態においてその後天性能が発揮されたためと 考えられる.

4. 衝撃荷重載荷時の破壊メカニズム

本実験結果において、AFRPシート曲げ補強 RC 梁の破 壊形式は、シート目付量によらず静荷重載荷時にはシート 剥離、衝撃荷重載荷時にはシート破断となっている.ま た、本実験の範囲では、RC 梁の耐衝撃性に及ぼすシート 目付量の影響は比較的小さいことが明らかになった.今 後、さらに目付量を増加させた場合についても検討する 必要があるものと判断される.ここでは、AFRPシート曲 げ補強 RC 梁に衝撃荷重が作用する場合の破壊メカニズム について検討する.

図-6には、A830-S および A830-I-H2.5/3.0 試験体に関 する実験終了後のひび割れ分布性状を示している.図よ り、静載荷した A830-S 試験体の場合には、曲げひび割れ と共に斜めひび割れが発生してそのピーリング作用によ りシートが剥離して終局に至っていることが分かる.こ れに対して、衝撃荷重を載荷した A830-I 試験体の場合に は、載荷点から少し下方の点をピークにアーチ状とも取 れる斜め下方に発生したひび割れ(以後,これをアーチ 状ひび割れと呼ぶ)が卓越していることが分かる.また, 落下高さH=2.5mの場合には,下縁のひび割れ先端部か ら両支点方向にシートの接着界面に沿った水平ひび割れ が発生している.落下高さH=3.0mの場合には,アーチ 状のひび割れ内部に多数の曲げひび割れが発生し,シー トが破断するとともに下縁かぶりコンクリートが著しく 消失している.この様な傾向はA415-I-H3.0試験体でもほ ぼ同様に認められた.このことから,衝撃荷重載荷時に は静荷重載荷時に比較して,載荷点近傍のアーチ状ひび 割れが卓越する傾向にあることが明らかになった.

図-7には、上記のようなシート破断に至る過程を検討 するために、A830-I-H3.0 試験体に関するシートの軸方向 ひずみ分布と高速度カメラで撮影したひび割れ性状を示 している.ここでは、重錘衝突後、0.5、1、4、8、9.5 および 10 ms 経過後の状況について整理している.

図より,載荷点近傍の破壊過程は,1)重錘衝突直後に斜 め方向にひび割れが発生し(i),2)そのひび割れが進展・ 開口してアーチ状のひび割れを形成する(ii,iii),3)その 後,アーチ内部に微細な曲げひび割れが多数発生し開口 する(iv,v),4)ひび割れ開口に伴いシートひずみが急増 してシートが破断する(vi),であることが分かる.なお, このような状況はA415-I-H3.0 試験体においても同様で あった.

図-6 ひび割れ分布性状の比較

図-7 ひずみ分布と載荷点近傍のひび割れ性状

このように、AFRPシート曲げ補強 RC 梁のシート破断 にはアーチの形成とアーチ内部に発生した曲げひび割れ の開口が密接に関連していることが明らかになった.ま た、本実験で RC 梁の耐衝撃性に及ぼすシート目付量の 影響が強く現れないのは、梁の耐荷機構がアーチ構造の 形成からアーチ基部の下方および水平移動に伴ってアー チクラウン部の角折れによる局部的な曲げに移行し、そ の曲げ作用がシートの引張り耐力よりも大きいことによ りシート破断に至ったためと推察される.この破断を抑 制するためには、さらなる目付量の増加を暗示している. なお、アーチ状のひび割れはスラブのスキャビングに類 似した挙動によって発生し、かつそのアーチ構造はシー ト補強によって瞬間的に形成されたものと推察される.

5. **まとめ**

本研究では、AFRPシートで曲げ補強された RC 梁の耐 衝撃挙動に及ぼすシート目付量の影響を検討することを 目的に、既往の研究よりも目付量が大きい AFRP シート を用いて補強した RC 梁の衝撃荷重載荷実験を行い、シー ト目付量の影響について検討を行った.本実験により得 られた知見をまとめると、以下の通りである.

- AFRPシート曲げ補強により、衝撃荷重載荷時における載荷点変位や残留変位を抑制可能であり、その効果はシート目付量が大きいほど大きい。
- 2) 衝撃荷重載荷時には静荷重載荷時に比較して,載荷 点近傍にアーチ状のひび割れが卓越して発生する傾 向にある。
- 3) RC 梁の終局時耐衝撃性に及ぼすシート目付量の影響 が強く現れないのは、載荷点近傍にアーチ構造が形 成されるもののアーチ基部に相当するシート接着さ れた梁下縁部の変動によりクラウン部を中心に角折 れが生じ局部的な曲げの作用が顕在化するためと推 察される。

参考文献

- 今野久志,西 弘明,栗橋祐介,岸 徳光: AFRP シート接着補強による損傷 RC 梁の耐衝撃挙動,コンクリート工学年次論文集, Vol.35, pp.721-726, 2013.
- 2) 土木学会:コンクリート標準示方書 [設計編], 2007 年 制定