津軽海峡において潮流が波浪及び波浪エネルギー場に与える影響の特徴化

Characterization of the effect of the tidal current on the wave and wave power point field

北海道大学大学院工学院 〇学生会員 米子佳広(YoshihiroYoneko) 北海道大学大学院工学研究院 正員 猿渡亜由未(Ayumi Saruwatari)

1. はじめに

近年、再生可能エネルギーを活用しようという動きが 世界中で活発になっている.しかし、再生可能エネルギ ーを活用する際には、自然現象に左右されるため、エネ ルギーの安定供給が難しいという点がある.この問題を 解決するために複数のデバイスを組み合わせ、再生可能 エネルギーの出力を安定させる試みが行われている.図 1は Hann-Ocean group (<u>http://hann-ocean.com/</u>) が提案 しているデバイス,Hexifloat である. このデバイスは表 面に設置したソーラーパネルによる発電を中心に、表面 のプロペラで風力発電,海洋中に設置したタービンで潮 流発電,側面で波力発電を行うものである. Hann-Ocean group の計算では太陽光発電で 45kWp, 風力発電で 18kWp、波力発電で 45kWp, 潮流発電で 23kWp の発電 設備容量が見積もられており、これらのエネルギーは互 いに補間し合うことにより出力の不安定さを補うことが できる.このようなデバイスの設置に適しているのは波, 流れ双方のエネルギーが高いサイトである. これまで海 洋エネルギー発電のサイト評価に関する研究が数多くな されてきたが本デバイスの敵地となるような場所では, 波と流れの相互作用がそれぞれのエネルギーに与える影 響について考慮する必要がある.これまでに例えば一様 流中の微小振幅波の変形や長波(潮汐)の相互作用(例 えば Longuet-Higgns and Stewart, 1960) 等については理 論的な研究がなされてきたが、いずれも比較的単純な条 件を仮定して導かれたものであり、実際の地形や自然現 象に適用するのは困難である.本研究は津軽海峡を対象 に、波と流れの相互作用が波浪及び波エネルギーに与え る影響を特徴化することを目的とする.

図 1. 再生可能エネルギー複合発電装置 Hexifloat (a) 出典

http://energiesdelamer.blogspot.jp/2011/02/hexifloat-ilemodulable-et-mix.html

2. 計算方法

2-1 波浪推算モデル

波力エネルギーの分布を求めるために、デルフト工科 大学で開発された波浪採算モデルである Simulating Wave Nearshore (SWAN)を用いる.これは沿岸地域と内 陸水域において風波の計算ができる第三世代波浪モデル である.

本モデルは次式を基礎式とする.

 $\frac{\partial N}{\partial t} + \frac{\partial (C_x + U_x)N}{\partial x} + \frac{\partial (C_y + U_y)N}{\partial y} + \frac{\partial C_\sigma N}{\partial \sigma} + \frac{\partial C_\theta N}{\partial \theta} = \frac{S_{tot}}{\sigma}$ $N = E(x, y, t, \sigma, \theta) / \sigma$ $S_{tot} = S_{wind} + S_{nl3} + S_{nl4} + S_{ds,w} + S_{ds,br}$

ここでは E は波エネルギー, x,y は水平方向(それぞ れ東,北を正とする),t は時間, σ は波の角周波数, θ は波向き, N は Wave avtion である.また Cx,Cy は x,y 方向の群速度,Ux,Uy は流れの流速,C θ ,C σ は θ , σ 方向へ のエネルギー伝播速度である. S_{tot} はエネルギーのソー ス,シンクを表す項であり,風によるエネルギー入力 S_{wind} , 3波・4波の相互作用,白波砕波,底面摩擦,

沿岸砕波によるエネルギー散逸 $S_{nl3}, S_{nl4}, S_{ds.w}, S_{ds.b}, S_{ds.br}$.

入力する海上風はヨーロッパ中期予報センター (ECMWF) が公開する再解析データ Interim (解像度 0.75°x0.75°, 3時間ごとに提供),もしくは次節で述べ る気象モデルによる計算結果を用いる.

2-2 メソスケール気象モデル

風速場の計算は米国大気研究センター (NCAR) 等に より開発された非静力学メソスケール気象モデルである Weather Research and Forecasting Model (WRF-ARW,ver3.4) により行った.本モデルは圧縮性流体のた めのオイラー式を σ 座標系で解くことで風速,温度,圧 力等の分布を求めるものである.本モデルでは境界条件 として再解析データを入力するが,本研究では National Center for Environmental Prediction により6時間おきに提 供される Final Analysis(FNL)データ (解像度 1°×1°)を用 いた.また本モデル内で使用する各種のモデルは対象ス ケールの計算の際の典型的なものを使用しており,それ ぞれ表1に示す.

スキーム	モデル名
雲微物理スキーム	Single-moment six-class
	scheme(Hong · Lim,2006)
長波放射スキーム	Rapid radiative transfer
	model(RRTM)(Mlawer ら,1997)
短波放射スキーム	Goddard's scheme(Chou •
	Suarez,1994)
表層過程	Mesoscale Model(MM5) similarity
	theory(Zhang • Anthes, 1982)
陸面過程	NOAH land surface model(Chen ·
	Dudhia,2001)
惑星境界層スキーム	Yonsei University scheme(Hong
	<u>ර</u> ,2006)
積雲パラメタリゼー	Kain-Fritsch scheme(Kain,2004)
ション	

表-1 WRF で用いられる各種モデル

2-3 海洋流れモデル

本研究では、海洋流れモデルとしてマサチューセッツ 工科大学にて開発された MIT General Circulation Model (MITgcm)を用いる. MITgcm は非静力学過程を3次 元計算することができるものではあるが、本研究では波 と流れの相互作用について着目している為、ここでは2 次元での計算を行った. 境界条件として8分潮 (M2,S2,N2,K2,K1,O1,P1,Q1)分の潮流流速から補間す る事により地球スケールの潮汐解析解である TPXO7.2 (最高解像度 0.25°x0.25°)を与えた.本研究では3領域 のネスティング計算を行った.

2-4 計算条件

表-2 と図-2 に SWAN の計算領域及び条件を示す.

表-2 計算領域及び計算条件

図-2 domain1,2,3 計算領域

計算領域における地形は General Bathymetric Chart of the Oceans(Gebco)の提供する $30 \sec \times 30 \sec$ 解像度データを 基に与えた.入力する海上風は領域1では ECMWF の Interim (グリッド幅 $0.75^{\circ} \times 0.75^{\circ}$)を用い,領域2と3では WRF の計算結果 (グリッド幅 $0.1^{\circ} \times 0.1^{\circ}$)を使用した. さらに MITgcm で計算した潮流流速・潮汐データを領 域3にて入力した.境界条件は領域2には領域1での, 領域3には領域2の SWAN 計算結果を使用した.

3. 検証

計算した波浪場の再現性を確認するため,国土交通省 港 湾 局 が 全 国 港 湾 海 洋 波 浪 情 報 網 (http://www.mlit.go.jp/kowan/nowphas/) によって提供し ているナウファス波浪観測データと SWAN の有義波高 計算結果を比較する.(図-3) 検証のために対象とした地 点は青森県八戸(北緯 40 度 40 分,東経 141 度 45 分)で あり,領域 3 での領域・条件を用いて計算している.計 算期間は 2006/10/1 0:00 から 2006/10/31 0:00 までとなっ ている.細かい波高上昇のタイミングや大きさにずれは あるが,10/6 付近及び 10/25 付近の高波浪を含めた全体 の大まかな傾向を再現できていることが確認することが できた.また紙面の都合上本論文には掲載していないが 八戸以外にも計 3 点において有義波高,ピーク周期,平均 波向の比較を用い,計算結果が実波浪場を妥当に再現し ていることを確認している.

---swan結果 ---ナウファス波高(八戸)

図-3 八戸における SWAN 計算結果とナウファス波浪観 測データの有義波高比較

4. 計算結果

本研究の目的は潮流と波浪がエネルギー場に与える影響を特徴化する事である.波浪エネルギーは以下の式に よって定義される.

$$W = \rho * g^2 * \pi * Hsig^2 * Tp$$

W は波エネルギー, p は密度, g は重力加速度, Hsig は有義 波高, Tp はピーク周期を示している. W は有義波高の大 きさに主に依存するので, 波高に注目して解析を行う.

今回,潮流と波の相互作用を確認するため,domain3 に おいて①2006/10/1 0:00~10/30 23:00,②2007/2/1 0:00~2/27

図 4-1 domain3 における海抜(上)と最大潮流速空間分 布図(下)

23:00,③2007/4/1 0:00~4/29 23:00 の期間を対象に解析を 行った. 図 4-1 は domain3 の地形図と,対象期間におけ る潮流速の最大値を空間分布図に表したものである. 今 回は domain3 の中で 3 つの期間中を通して潮流の大きい 点 A(北緯 41.3 度,東経 140.33 度)と点 B(北緯 41.55 度, 東経 140.9 度)の地点に注目した. この地点は海底地形 の深さが急激に変化していることで流速が速くなってい ると考えられる. なおスペースの関係上 2006 年 10 月の 潮流速の図のみ載せるが,②・③でも点 A と B で最も潮 流流速が大きかったことを確認している.

図 4-3 と 4-4 は地点 A および B の①~③中における 波と流れの相対角度,潮流を考慮していないケースの有 義波高 Hwave,潮流を入れたケースの有義波高 Hcurrent, それらの相対比 R=Hcurrent/Hwave を示している. 今回 はスペースの問題上,①~③の中での代表的な事例のみを あげる. 波の流れの相対角度は東を 0 とし,反時計回り を正とする. 図 4-2 における赤い点は波と流れの相対角 度が-160~-180 度もしくは 160~180 度の時間の各点を示 している. この時,相対比の値が 1 より大きくなること から,潮流と波の向きが相反する方向の時,波高が増大す ることがわかる.

図 4-5 と 4-6 は,有義波高比 *R* と流れの向きに対する波 向きの相対角度 θ との関係を極座標で示したものである. 赤い線は *R* の中央値を表し,黒の点線は半径1の円を表 す.相対角度が 180 度付近の時,*R* が大きく,また0度付 近では *R* が小さくなるという典型的な波-流れ相互作用 による波変形が見られた.ただし,同じ流れに対する波 の角度が 180 度付近の場合であっても(流れが波に逆行),潮流の向きが海峡内から海峡外へと流れる場合の 方が海峡外から海峡内へと流入する場合よりも,波高の 増幅率 R が大きく表れる傾向が確認された.この詳細 な理由については未だ調査中であるが,本地点の特徴の 一つであると考える.

また,一様流中の微小振幅波を考慮する事により波高 の増幅率の理論値を次式の様に求める事ができる.

$$\frac{H}{H_1} = \left[\frac{(1 + \frac{2h^*k_1^*}{\sinh 2h^*k_1^*})}{k^*} * \frac{1}{(1 + \frac{2h^*k_1^*}{\sinh 2h^*k_1^*})(\frac{1}{k^*} + U^*) - 2U^*}\right]^{\frac{1}{2}}$$

増幅率 R の理論値と計算値との比較を図 4-2 に掲載する が、潮流流速が非常に大きい時には理論値は過大評価と なる.

図 4-2 増幅率 R の理論値と計算値との比較

図 4-3 地点 A における 2006/10/24 0:00~10/25 23:00 波 データ時系列

5. 波力エネルギー

波力エネルギーは前項で述べたが,波高に依存して変 化する.図 4-7 は地点 B での 2006/10/01 0:00~10/30 23:00 の波力エネルギーを時系列で表したものである.

図 4-4 地点 B における 2007/4/21 0:00~4/23 23:00 波デ ータ時系列

図 4-5 地点 A における 2006/10/1 0:00~10/30 23:00 の波 と流れの相互作用(左)・2007/4/1 0:00~4/29 23:00 の波 と流れの相互作用(右)

図 4-6 地点 B における 2007/4/1 0:00~4/29 23:00 の波と 流れの相互作用(左)・2006/10/1 0:00~10/30 23:00 の波 と流れの相互作用(右)

23:00 の波力エネルギーを時系列で表したものである. 潮流を加味していない場合と加味している場合のエネル ギーを比べると,波高が大きくなっている影響で,潮流

図 4-7 地点 B における 2006/10/01 0:00~10/30 23:00 の波 カエネルギー

が入っている計算のほうが波力エネルギーを多く得ら れることがわかった.

6. 結論

・波浪推算モデル SWAN を用いて求めた波浪場の再現 性を確認することができた.

・津軽海峡太平洋側では潮流が西から東向きに変わる際 に,波向きが東向きであると波高が増大する.

・津軽海峡日本海側では潮流が南南西の向きで,波向き が東向きになると波高が増大する.

・波と流れの相互作用により波高が増大したことで,より大きい波エネルギーが得られる.

- 参考文献
- Longuet –Higgins,M.S. and R.W.Stewart :The Chamges in Amplitude of Short Gravitiy Waves on Long Waves and Tidal Currents,Jour. Of Fluid Mechanics,Vol.8,pp.565-583,1960
- Hong,S.Y.,and J.-O.J.Lim:The WRF Single-Moment 6-Class Microphysics Scheme(WSM6),J.Korean Meteor.Soc.,42,pp.129-151,2006
- Mlawer,E.J.,S.J.Taubman,P.D.Brown,M.J.Iacono,and S.A.Clough:Radiative transfer for inhomogeneous atomosphere:RRTM,a validated correlated-k model for the longwave,J.Geophys.Res.,102,D14,pp.16663-16682,1997
- Chou,M.D.and M.J.Suarez: An efficient thermal infrated radiation parameterization for use in general circulation models,NASA Tech.Memo,104606,3,pp.85-85,1994
- 5) Zhang,D.-L and R.A.Anthes:A high-resolution model of the planetary boundary layer-sensitivity tests and comparisons with SESAME-79 data,J.Appl.Meteor.,21,pp.1596-1609,1982
- 6) Chen,F.and J. Dudhia:Coupling an advanced landsurface/hydrology model with the Penn State/NCAR MM5modeling system. Part I :Model description and implementation ,Mon Wea.Rev.,129,pp.569 -585,2001
- Hong.S.Y., Y.Noh, and J.Dudhia: A new vertical diffusion package with an explicit treatment of entrainment processes, Mon. Wea. Rev., 134, pp. 2318-2341, 2006
- 8) Kain,J.S.:The Kain-Fritsch convective parameterization:An update,J.Appl.Meteor,43,pp.170-181,2004