Tidal Creek の形成・発達に及ぼす水理パラメータ依存性に関する実験

An experimental study on dependency of hydraulic conditions to morphological processes of tidal creek

北海道大学工学院 ○学生員 奥寺亮太 (Ryota Okudera)
北海道大学工学院 学生員 岩崎理樹 (Toshiki Iwasaki)
北海道大学工学研究院教授 正会員 清水康行 (Yasuyuki Shimizu)
北海道大学工学研究院準教授 正会員 木村一郎 (Ichiro Kimura)

1. はじめに

感潮湿原では、潮汐流を主要因とした独特の水理特性により、 しばしば Tidal Creek と呼ばれる複雑な水路網が形成される。 一方で、陸・海域境界である感潮域では、独特の生態系が形成 されており、このような流れー地形変動一生態系は互いに密接 に関係している。例えば、Wallance et al.¹⁾は、実スケールにお ける水路網を伴う感潮湿原の地形変動と生態系の関係について、 5年にわたるモニタリング調査を行い、水路網の特徴、特に細 かな水路の形成が生態系や水質に大きな影響を与えることを示 している。現地観測によってこれらの過程を追跡しようとする 研究^{1,2)}が行われているが、現象が長期間であるゆえに、形 成・発達過程全体を把握することは容易ではない。

そこで、近年では Tidal Creek の再現実験を室内実験のスケー ルで行い、その地形変動特性を議論する研究が行われ始めてい る。これらの研究は対象とする地形形状から二つに分類するこ とができる。一つは、イタリア・ベニスに代表される湾内部に 形成される大規模水路網である。Stefanon et al.³は、こうした 場を模擬した実験水槽を用いて、Tidal Creek の形成・発達過程 を再現した。再現された水路網は現地でみられる水路網と同様 な地形特性を持ち、その地形特性に及ぼす平均水位や潮汐条件 の影響が考察されている。この場合、水路網形成には湾口が大 きな影響を持つことが予想される。一方で、湾口は必ずしも水 路網形成の必要条件ではなく、図-1 に示す様に海岸線に規則 的な間隔を持って形成される例も存在する。Vlaswinkel and Cantelli⁴⁾、岩崎ら⁵は、このような単純な地形条件における Tidal Creek の形成・発達に関する実験を行っている。このよう な水路網の形成は、前者よりもより基本的な感潮域の地形変動 過程である。これらの基本的な地形変動の素過程及びそのメカ ニズムを明らかにするためには、水理パラメータに着目した比 較対照実験により、各パラメータが水路網のどのような特性に 影響を及ぼすかを考察する必要があるが、現状ではそのような 物理実験は不足している。

本研究では、異なる潮汐条件下における水理実験から得られ る水路網の形状を定量的に評価し、時間的変動特性及びそれに 対する水理条件の影響について議論を行う。

2. 実験条件

本研究では、異なる潮汐条件下での比較対照実験を5ケース 行い、その結果について考察する。いずれの実験も、潮汐条件 を除いた各パラメータは同じである。まず、本研究で用いた実

図-1 オーストラリア、サウス・ウェスレイ島付近に形成 される水路網。

験装置の概略図を図-2(a)に示す。実験では全幅約 0.9m、奥行 き約 1.8m の小型水槽を使用し、底面は粒径 0.18mm、密度 1480kg/m³のポリ塩化ビニル (PVC) 粉末で構成されている。 底面勾配は 1/100 になるように調整しているため、領域長は図 -2(b)のように振幅のみに規定される。この実験装置は、フロー トを取り付けたロボットシリンダの等加速度上下運動により水 槽内の水位を変化させ、実際の潮汐の様な水位変動を擬似的に 再現するもので、規則的な水位変動を自動的に生み出すことが 可能である。ケースごとの潮汐条件を表-1 に示す。実験では、 より正確に潮汐を再現するため最高・最低水位に到達してから 再び水位を変化させる前に一定の休止時間を設けた。ただし、 水位上昇時には流れと水位変動の時間遅れが小さく、地形形成 に与える影響も小さいと考えられるので、満潮から干潮へ移る 休止期間を10秒、干潮から満潮へ移る休止時間を50秒とした。 いずれの場合も、潮汐振幅は 10mm であるが、Run5 について は、Run2 と同様の潮汐周期で、潮汐振幅を 5mm に設定した。 なお、Runl-4 は、潮汐周期を変化させることで水理条件を変 化させている。二度の休止期間を含む水位上昇・低下の過程を 1 サイクルとし、形成された地形を 50、100、250、500、1000、 1500、2000 サイクル毎にデジタルカメラで記録した。

3. 実験結果

各実験ケースにより得られた水路網形状の時間変化を図-3 に 示す。まず、全てのケースに共通する特徴として、実験の初期 段階(0-100 サイクル)の時点で、対象領域全域に渡る水路網 の発達が挙げられる。この段階で観測される水路網は、いずれ もその形状を判読しやすい明瞭な水路である。しかし、中期段 階(500-1000 サイクル) に移行するに従い水路網の形状が乱

図-2 実験装置の模式図(a)と縦断図(b)。図中、左側が沖 側、右側が岸側である。

表-1 実験条件

	Run1	Run2	Run3	Run4	Run5
振幅 (mm)	10	10	10	10	5
周期 (秒)	60	120	240	360	120
領域長 (m)	1	1	1	1	0.5

れ不明瞭なものになっていき、最終的には、初期段階で形成さ れた水路網はほとんど失われ、わずかな水路が残されるという 傾向が見られた。また、潮汐周期が短い Run1 は、他のケース と比較して実験初期においても水路が形成されづらく、最終的 な結果においても水路が形成されていない。水路の形状に着目 してみても、潮汐周期が短いケースほど(Run1、2)形成され る水路は直線的になり早い段階で消失する一方、潮汐周期が長 いケース(Run3、 4)ほど、より複雑で細かな水路が形成さ れ、1500 サイクルを超えた時点でも、比較的明確な水路網が 確認できる。相対的に流れが強い Run1 では地形が変動しやす いと考えられるが、観測結果では流れが強いほど細かな凸凹が 消失しており、むしろ水路網が形成されづらいことを意味して いる可能性がある。ただし、本実験は本来沖側や陸域から輸送 される土砂や、植生が生成する生物的な土砂生産による堆積の 影響
⁶⁾を考慮していないため、侵食が支配的な場となっている。 そのため、水路網がその形状を維持できず次第に消失・単純化 していくのは妥当な結果であるとも考えられる。また、侵食一 方である本実験では、時間の経過とともに水深の増大が増大し、 地盤の露出時間が短縮されることで、流れの集中が妨げられて 水路化の抑制を招いた可能性もある。岸側では、以上に述べた ような侵食の影響が卓越していると考えられるが、岸側から輸 送される土砂によって沖側では堆積の影響を受けた地形が形成 されている。例えば、Run3、4 では、実験初期より最低水位時 における水際線がより沖側に移動しているが写真より明らかで あり、この部分の地形は土砂堆積の影響を大きく受けていると 考えられる。堆積の影響は水路化に大きく影響していることは、 Run1の結果より考察できる。Run1においては、実験初期段階 では、他のケースでみられるような沖側の大規模水路群がみら れない。しかしながら、実験中期においては、明確ではないも のの水路のようなものが形成されている。これは、岸側の水路 網を経由して輸送される土砂が、その水路網スケールで沖側に 堆積することで、形成されたものとも解釈できる。Run1の場 合は相対的に流れが強く、堆積よりも侵食の影響が強いためか 最終的には水路は形成されないが、その他のケースでは堆積の 影響により、明確な水路が形成される。特に、Run4のケース では、初期に発達する複雑な水路網から、大規模な蛇行した水 路群が見て取れる。これらの水路は、明らかに初期に形成され る水路とは特徴が異なるため、形成メカニズムが異なるとも考 えられる。

4. 考察

本研究では、実験で得られた地形形状を地形学的なアプローチ で分析し、潮汐条件の違いが地形形成に及ぼす影響について考 察する。図-3 より、潮汐周期が長いほどより入り組んだ水路 網が現れる傾向にあることが確認できる。既往の研究ⁿでは、 Horton-Strahler の手法を用いてまずそれぞれの水路に対して creek order と呼ばれる位数を定義し、水路長の分布を位数ごと に分析することで、水路網の特徴を定量的に考察している。本 研究でも同様の手法により水路網を定量化する。ここで、位数 1 の水路は全てのケースにおいて常に水路網全体の 7 割から 8 割を構成し、水路網の特徴を端的に示していると考えられる。 また、位数2以上の水路は全水路における構成比が小さく、ケ ースごとの違いも少ない。そこで、位数 1 の水路数 n1 とその 水路長L1 の関連性について考察する。

図-4 は、図-3 に示す水路網から得られる位数 1 の水路の確率 密度分布である。何れのケースも水路長が短い領域にピークを 持つ確率密度分布となっていることがわかる。図より、時間の 経過とともに最頻値の持つ確率密度が低下し分散が増大するが、 各ケースにおける最頻水路長はそれほど変化していないことが わかる。これは、時間の経過とともに最小水路は移動や再形成 を繰り返しながら消失するものの、形成される水路長はある程 度水理条件により規定されていることを意味していると思われ る。一方で Run1、2 の 1500 サイクル後の結果を見ると、明ら かに確率密度の分布形状が変化しており、地形変動の発達ステ ージが変化したものと判断される。従って、実現象においても 時間経過に伴い、水路網形状の特性が大きく変動していく可能 性があると考えられる。これは、Pye and French⁸⁰が現地観測で 得た結果と同様である。

次に、各ケースにおける水路長の特性を比較していく。まず、 代表的な指標として各ケースにおける位数1の水路の平均長さ を図-5 に示す。図より、平均水路長は時間とともに全体的に 増加傾向にあり、これからも細かな水路が消失していることが わかる。また、Run1-4 に着目すると Run2 を除いて潮汐周期が 遅いほど形成される水路長が短くなる傾向にある。よって、流 れの強さが水路長に有意な影響を与えることがわかる。また、 Run2 と Run5 に着目し水路長を比較してみると、Run2の半分

40 cm

図-3 各実験結果。A-E の順に Run1-Run5 の実験により得られた水路網である。また、1-3 の順に 50、500、1500 の潮汐サイク ル後の結果である。図中、左が沖側、右が岸側である。白点線はおおよその最低水位面を示す。

図−4 各ケースで得られた水路網の位数1の水路の確率密度分布。A〜E の順に、Run1〜Run5 の結果である。

の空間スケールである Run5 の方が長い水路長を持つ。 従って空間スケールによる単純な水路長の議論はできな いことが示唆されるが、Run5 は振幅が微小であること の誤差を否定できない。よって、空間スケールの影響に ついては今後の課題とする。

5. 結論

本研究では、Tidal Creekの形成・発達に対する水理パ ラメータ依存性について実験的に検討した。潮汐周期を 変化させた一連の実験より得られた結果を以下に示す。

・潮汐による流れが強いほど、水路網が形成されづらい 一方、相対的に流れが弱い場合は細かな水路が発達し、 水路網が複雑となることが示唆された。

・水路化には侵食と堆積の両方が重要であるが、両者の 物理メカニズムは異なる可能性がある。

・位数1の水路の確率密度分布形状より、位数1の水路 の長さスケールは潮汐周期が長いほど小さくなる傾向に ある。また、時間の経過と共に確率密度分布はその形状 を変化させ、地形変動ステージの移行を示唆している。 今後は、空間スケール及び底面材料パラメータの依存特 性について調べると共に、相似則を考慮した現地スケー ルの水路網との関連性、潮汐周期を変化させたことに対 する実現象との整合性について明らかにしていく。

参考文献

1)Wallance, K.J., Callaway, J.G., and Zedler, J.B. : Evolution of tidal creek network in a high sedimentation environment: A 5-year experiment at Tijuana estuary, California, Estuaries, 28, pp.795-811, 2005.

2)Shi,Z., Lamb, H.F., and Collin, R.L. : Geomorphic change of saltmarsh tidal creek networks in the Dyfi Estuary, Wales. Marine Geology, 128, pp.73-83, 1995.

3)Stefanon, L., Carniello, A., D'Alpaos, A., and Rinaldo, A.: Signatures of sea level changes on tidal geomorphology: Experiments on network incision and retreat, Geopys. Res. Lett., 39, L12402, doi:10.1029/2012GL051953, 2012.

4)Vlaswinkel, B.M., and Cantelli, A.: Geometric characteristics and evolution of a tidal channel network in experimental setting, Earth Surface Processes and Landforms, 36, pp.739-752, 2010.

5)岩崎理樹、清水康行、木村一郎: Tidal Creek の発達に 関する実験と数値計算、水工学論文集、第 55 巻、 pp,859-864, 2010.

6)D'Alpaos, A., Lanzoni, S., Marani, M., and Rinaldo, A.: Landscape evolution in tidal embayments: Modeling the interplay of erosion, sedimentation and vegetation dynamics, J. eophys.Res., 112, F01008, doi: 10.1029/2006JF000537, 2007.

7)岩崎理樹・渡部靖憲・奥寺亮太・清水康行・木村一 郎:感潮湿原に形成される水路網の形状特性、海岸工学 論文集、第67 巻、pp,951-955,2011.

8)Pye, K., and French, P.W. : Erosion and accretion processes on British Salt Marshes. Vol.1, Introduction: Saltmarsh Processes and Morpphology, Cambridge Environmental Research Consultants, Cambridge, 1993