異なる粒子間付着力を持つ粒状材料の衝撃力伝達挙動

Impact force propagation behaviors of rock into horizontal granular mat with different adhesion effects

名古屋工業	专大学大学院
名古屋工業	美大学
名古屋工業	美大学
(独)土木	研究所寒地土木研究所
株式会社	構研エンジニアリング
株式会社	構研エンジニアリング
株式会社	構研エンジニアリング

○学生員	内藤直人	(Naoto Naito)
正員	前田健一	(Kenichi Maeda)
学生員	内藤駿佑	(Shunsuke Naito)
正員	山口悟	(Satoru Yamaguchi)
正員	牛渡裕二	(Yuji Ushiwatari)
正員	鈴木健太郎	(Kentaro Suzuki)
フェロー	川瀬良司	(Ryoji Kawase)

1. はじめに

我が国において、落石発生件数は減少傾向になく、 斜面の経年劣化による落石規模の拡大等の要因から落 石防護構造物の安全余裕度の低下が問題となっている。 その対策として、落石が防護工に衝突する前に落石エ ネルギーを分散・低減させる工法であるロックシェッ ド上面に設置される敷砂などの緩衝材や近年新たに考 案されている落石防護擁壁背面に設置される三層緩衝 構造(ソイルセメント+ジオグリッド+EPS)などが着目 され、その性能評価が重要な課題である。

そこで本研究では、敷砂や三層緩衝構造の重錘落下 衝撃実験でそれぞれの緩衝材の耐衝撃性能について検 討している。また、落石対策の性能設計を支援する一 方法として、個別要素法¹⁾²⁾(Discrete Element Method、以下 DEM と記述する)を用いて敷砂やソイ ルセメント³⁾の衝撃力伝達挙動に関する数値解析的検 討を行った。

本論文では、乾燥砂(気中乾燥状態)と不飽和砂(湿潤 状態)の重錘落下衝撃実験を行い、水の付着力が敷砂緩 衝材の耐衝撃性能へ及ぼす影響について調べた。数値 解析においては、はじめに付着力を持たない乾燥砂の 解析を行い、不飽和砂について水の表面張力による付 着力のモデル化を試みた。加えて、さらに強い付着力 を持つ粒状材料としてソイルセメントのモデル化を行 い、粒子間付着力の違いが衝撃力伝達挙動に及ぼす影 響について考察した。

2. 異なる含水状態の敷砂緩衝材重錘落下衝撃実験 2.1 実験概要

2.1 実験概要

本実験に使用した実験装置の概要を図-1 に示す。実 験では鋼製底盤に面一で設置された起歪柱型ロードセ ル(受圧面の直径 20mm、容量 10MPa)で伝達衝撃応力 を計測、鋼製底盤を支持する 9 個の起歪柱型ロードセ ル(受圧面の直径 87mm、容量 100kN)で計測した値を 足し合わせることで伝達衝撃力を算出した。重錘衝撃 力は重錘先端部に組み込まれているロードセルで計測、 さらにレーザ式変位計を用いて重錘貫入量を計測した。 また、貫入の様子を高速度カメラにて撮影した。

影響を明らかにするため、間隙比一定となるよう締め 固め、敷砂厚は 200mm と 300mm で実験を行った。重 錘の質量は 400kg、直径は 200mm であり、衝突速度 を $2\sim5m/s$ となるよう所定の高さまで重錘を上げた後 に自由落下させた。表-1 には実験ケース一覧を示す。

2.2 実験結果および考察

図-2には、重錘衝突時刻を0としたときの(a) 重錘衝 撃力、(b) 伝達衝撃力および(c) 重錘貫入量に関する時 刻歴応答波形と、(d) 伝達衝撃力が最大値を迎えるとき の底面応力分布を示している。

図-2(a)より、本実験ケースでは実験条件によらず t=5~8ms 程度で最大重錘衝撃力が生じており、衝突速

平成24年度 土木学会北海道支部 論文報告集 第69号

(a) 重錘衝擊力

(b) 伝達衝撃力

(c) 重錘貫入量

(d)底面応力分布

含水状態が敷砂緩衝材の緩衝効果に及ぼす影響 図-2

	敷砂			衝空៉声度
試験体名	層厚	間隙比	含水比	倒天坯皮
	$T(\mathrm{cm})$	е	W(%)	V(m/s)
D20-V2.0	20	0.67	1.39 (気乾)	2.00
D20-V2.55	20			2.55
D30-V2.0	30			2.00
D30-V3.0	30			3.00
D30-V4.0	30			4.00
N20-V2.0	20		6.34	2.00
N30-V2.0	30		7.29	2.00
N30-V3.0	30		7.08	3.00
N30-V4.0	30		7.12	4.00
N30-V5.0	30		6.19	5.00

表-1 実験ケース一覧

度の増加に伴ってピーク値は増加することがわかる。 また、乾燥砂よりも不飽和砂の方がピーク値は大きい 傾向にある。波形性状について、不飽和砂は重錘衝突 初期に急激に立ち上がりピーク値に達する三角形状の 第1波とその後に続く滑らかな正弦半波状の第2波か ら構成され、t=80~90ms程度で波形が0に落ち着く。 乾燥砂は、重錘衝突初期に急激に立ち上がりピーク値 を迎える三角形状の第1波目とその後に三角形状の波 を3つほど滑らかに連ねたような複数波から構成され ており、*t*=120~130ms 程度で力が収まる。

図-2(b)より、伝達衝撃力のピーク値は、重錘衝撃力 と同様、衝突速度の増加に伴ってピーク値も増加し、 乾燥砂と不飽和砂のピーク値を比較すると、前述の重 錘衝撃力とは逆で、不飽和砂よりも乾燥砂の方が大き い値を示した。波形性状は、重錘衝撃力とほぼ同様の 結果であった。

図-2(c)より、重錘貫入量は、衝突速度の増加ととも に貫入量は増加し、乾燥砂よりも不飽和砂の方が貫入 しづらい結果となった。

図-2(d)より、伝達衝撃力がピークに達するときの底 面応力分布については、乾燥砂よりも不飽和砂の方が 中心付近の応力は低く、より広範囲に応力が分布する 傾向が確認された。

これらの影響は、土粒子間に水が付着力として働く ためだと考えられ、乾燥砂は、その粒子間の付着力が ないためにせん断抵抗力が小さく、支持力が低いため に崩れやすいので、第1波以後、衝撃力が波打つよう に強い力と弱い力を行き来すると考える事ができる。

DEM を用いた数値解析的検討

3.1 解析概要

敷砂への重錘衝突は大変形を伴う現象であり、高速 度カメラの実験映像を見ると一部飛散する粒子の存在 も確認された。また、近年、精力的に研究が行われて いる落石防護擁壁背面に設置する三層緩衝構造の一部 であるソイルセメントも衝撃力を吸収する際に亀裂が 発生し破壊後はいくつものブロックに分裂する。また、 土粒子間のセメント結合が完全に剥離することで粉々 に粉砕された箇所も確認されている。このような現象 に対して、DEM 解析では物体の衝突から変形、塑性、 破壊、剥離という一連の流れが表現可能である。

そこで、本研究では、粒子間付着力の異なる3つ

平成24年度 土木学会北海道支部 論文報告集 第69号

粒状材料(乾燥砂、不飽和砂とソイルセメント)の2次元 DEM 解析を行った。水の付着力は、接点に引張とせん 断のボンド強度(コンタクトボンド)を与え、セメント結 合による付着は、接点の引張、せん断に加えて曲げ剛 性を入れたボンド(パラレルボンド)を用いることでモ デル化を行った。解析では図-3のようなモデルで数値 計算を行った。

3.2 付着力を模擬した解析結果

3.2(1) 乾燥砂の解析結果及び考察

乾燥砂については既報を基にパラメータ設定を行い、 その結果と実験値との比較を図-4に示す。図-4(a)より、 重錘衝撃力は、重錘衝突直後の急激な立ち上がりは再 現できているが、ピーク値の大きさに関しては精度が 高いとはあまり言えない状況である。図-4(b)より、伝 達衝撃力の立ち上がりからピーク値の大きさに至るま で精度よく再現できていると言える。図-4(c)より、重 錘貫入初期ではほぼ線形に増加するが、解析結果はそ の直線からすぐ外れてしまうものの最終的な貫入量は おおよそ一致している。図-4(d)は、伝達衝撃力最大時 の底面応力分布を最大応力で除したものである。応力 分布の概形は概ね一致しているといえるが解析値の方 がわずかに広く分布している結果となった。 以上の比較より、乾燥砂についてはおおよそ実現象 を再現できていると言える。ただし、波形性状につい て第2波目以降の衝撃力の発現が実験値のように第1 波目から連続的になっておらず、第1波と第2波以降 の間に衝撃力が0の瞬間がある。これは、重錘貫入が2 次元の影響を強く受けているためだと考えられ、3次元 DEM 解析が必要であると言える。

3.2(2) 不飽和砂の解析結果および考察

本論文では、敷砂の含水状態が乾燥から不飽和にな ることにより追加するパラメータはコンタクトボンド のみとし、コンタクトボンドの強度を変化させること で土粒子間に働く表面張力を模擬することを試みた。 実験結果は、気乾状態から湿潤状態になることで衝撃 力の最大値はあまり変化せず、底面応力分布の形状が 縦につぶれて横方向に広がるような傾向を示した。し かし、解析結果はボンド強度を非常に小さな値から 徐々に増加させても底面応力分布の形状が実験結果の ように広がることはなく、衝撃力の最大値は増加する 傾向にある。

本解析結果より、不飽和砂における土粒子間の表面 張力をモデル化するにはコンタクトボンドだと不十分 であることがわかった。これは、実際に土粒子間に働 く表面張力よりもコンタクトボンドの結合による剛性 の方が大きいため再現することができないと考えられ る。実際の表面張力は、粒子同士が少し離れても粒子 間の表面張力が消えないことや、粒子の粒径や水の曲 率によって引っ張る力が変わる。したがって、DEM 解 析において不飽和砂のモデル化を行うにはボンドのよ うな簡易的な接点力ではなく、物理現象に基づいたモ デル化を行う必要があると言える。

図-6 セメント結合した堆積層内の亀裂進行の様子

3.2(3) ソイルセメントの解析結果

ソイルセメントのモデル化は、乾燥砂のパラメータ にパラレルボンドを追加することによって再現を試み た。

図-5(a)(b)より、解析により生じる衝撃力は実験値 の5割から6割程度である。図-5(c)より、重錘貫入量 は解析値に比べてかなり早い段階で重錘の動きが止ま っていることが分かる。これら、実験値との整合性が ない原因として、粒度やボンド強度の兼ね合いが考え られ、パラメータの兼ね合いを厳密に調べることで精 度よく再現できると考える。図-5(d)より、伝達衝撃力 が最大時の底面応力分布の形状は、実験結果と同様に 中心から 35cm 程度の範囲まで比較的高い応力が集中 している様子が確認された。

図-6 は、セメント結合を模擬したパラレルボンドの 結合状況を可視化した図である。た8.2ms で伝達衝撃 力がピーク値を迎え、そこから任意の時間ステップで のボンドの切断状況を示した。粒子の色が同一色の部 分はボンド結合が残っておりブロック状の塊であるこ とを示し、様々な色がついている粒子はボンドが切れ てバラバラになっている状態を示す。実験結果と同様 にボンドが切れてバラバラになっている粒子や大きな ブロック塊として残る部分もある。

本解析結果より、衝撃力の最大値や貫入量の再現性 はそれほど高くないものの、底面の応力分布の分散度 合いやソイルセメントの破壊状況をよく表せている結 果といえる。今後は、パラメータのモデル化をさらに 厳密に行うことで、精度の高いソイルセメントのモデ ル化につなげる。

4. まとめ

重錘落下衝撃実験より、水の付着力による衝撃特性 を調べた結果、水の有無にかかわらず衝撃力の最大値 は概ね等しい値をとるが、不飽和砂の方が底面応力分 布の形状がなだらかな山の形状となり、最大伝達応力 が小さくなる傾向があった。また、水の付着力は貫入 量にも大きな影響を与え、乾燥から不飽和になること で貫入量が1/2程度にまで抑えられることが分かった。 さらに付着力が大きいソイルセメントのような緩衝材 では、敷砂に比べて底面応力分布の広がりが顕著に出 ており、荷重分散効果が期待できると言える。

また、粒子間の付着力のモデル化について簡単な検 討を行い、今後のモデル化の方針を示した。水の付着 力についてはボンドのような簡易的なモデル化ではな く物理的意味に基づいたモデルを構築することが必要 であると考えられる。セメント結合による付着力はボ ンド強度やその他のパラメータとの兼ね合いを厳密に 調べる必要がある。

参考文献

1)羽柴寛文,前田健一,内藤直人,山口悟,牛渡裕二,鈴木 健太郎,川瀬良司:落石特性の異なる水平堆積層内の衝 撃力伝達挙動に関する二次元個別要素法解析,土木学会 論文集 A2(応用力学),Vol.68,No.2,pp.443-454,2012. 2)前田健一,羽柴寛文,刈田圭一,牛渡裕二,川瀬良司:ン 次元個別要素法を用いた落石による水平堆積層の衝撃 力伝達挙動,土木学会論文集 A2(応),Vol.67,No.2, pp.355-364,2011. 3)山口悟,岸徳光,栗橋祐介,牛渡裕 二:ソイルセメントに関する重錘落下衝撃実験,コンク リート工学論文集,Vol.34.No.2,pp.733-738,2012.