AFRP 板水中接着曲げ補強 RC 梁の耐荷性能に及ぼす せん断キーの配置間隔の影響

Effects of interval of shear-key on load-carrying behavior of flexural reinforced RC beams by means of submerged AFRP plate bonding method

室蘭工業大学大学院	\bigcirc	学生会員	鹿嶋	辰紀	(Tatsunori Kashima)
室蘭工業大学大学院		正会員	栗橋	祐介	(Yusuke Kurihashi)
三井住友建設 (株)		フェロー	三上	浩	(Hiroshi Mikami)
釧路工業高等専門学校		フェロー	岸	徳光	(Norimitsu Kishi)

1. はじめに

近年,連続繊維シート(以後 FRP シート)接着工法によ る耐震補強工事が数多く採用されている.これは,耐震設 計法の改定に伴い,既設鉄筋コンクリート(RC)橋脚を対 象とした補強工事が盛んに行われているためである.し かしながら,耐震補強を必要とする構造物は陸上の橋脚だ けではなく,当然のことながら河川橋脚も含まれる.耐 震補強工法は多岐にわたるがいずれの補強工法において も,河川橋脚を対象にした場合には,橋脚基部周辺に仮 締切工事を行い,施工部を予め乾燥状態にする必要があ る.そのため陸上での補強工事に比較して膨大なコスト が必要となることから,河川橋脚の耐震補強工事は限定 的にしか行われていないのが現状である.

仮締切が不要で,水中での施工が可能なFRPシート接 着工法を開発することにより,河川橋脚の補強工費の大 幅な削減が可能となり,補強工事の推進が期待できるも のと考えられる.著者らはこのことに着目し,予めアラ ミド繊維シート(以後,AFPRシート)にエポキシ系樹脂を 含浸硬化したAFRP板を水中接着樹脂を用いて接着補強 する工法を考案した.

既往の研究では,提案の工法を用いて曲げ補強した RC 梁の静載荷実験を行っている¹⁾.その結果, RC 梁の曲げ 耐力を向上可能であるものの,鉄筋降伏後の比較的荷重 の大きい領域における付着性能は気中接着補強の場合よ りも劣ることが明らかになっている.このことより,付 着性能改善のため,著者らはせん断キーを設ける力学的 手法により,付着性能が改善可能であることを明らかに している²⁾.しかしながら,せん断キーの配置間隔や RC 梁の断面寸法の影響については明らかにされていない.

このような観点より、本研究では水中接着補強工法に おける付着性能改善策の提案を目的として、断面寸法を2 種類に変化させ、コンクリート表面に等間隔にせん断キー を設け、断面種類Aではその配置間隔を3種類、断面種 類Bではその配置間隔を4種類に変化させた場合とせん 断キーを配置していない場合について、その補強効果を 静載荷実験により検討した.

2. 実験概要

2.1 試験体概要

表-1には、本実験に用いた試験体の一覧を示している. 試験体数は、断面の寸法およびせん断キーの配置間隔を変化させた水中接着曲げ補強試験体の全9体である.

表 - 1 試験体・

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
試験体名	断面種類	せん断キー間隔 (mm)		
А		-		
A-G30	А	30		
A-G60	$(150 \times 150 \text{ mm})$	60		
A-G90		90		
В		-		
B-G30	D	30		
B-G60	B	60		
B-G90	$(220 \times 220 \text{ mm})$	90		
B-G135		135		

表-2 AFRP シートの力学的特性値 (公称値)

繊維	保証	可し	引張	弾性	破断
目付量	耐力	厚さ	強度	係数	ひずみ
(g/m ²)	(kN/m)	(mm)	(GPa)	(GPa)	(%)
280	392	0.193	2.06	118	1.75

表-3 水中硬化型接着樹脂の力学的特性値(公称値)

	物性值(MPa)	測定方法
圧縮強度	44.4	JIS K - 6911
曲げ強度	22.5	JIS K - 6911
引張強度	9.3	JIS K - 6911

試験体名の内,第1項目は断面種類(A:断面種類A,B: 断面種類B),第2項目の英文字Gに付随する数値はせん 断キーの配置間隔(mm)を示している.

図-1には、試験体の形状寸法、配筋状況および補強概 要を示している.本実験では、断面寸法の異なるA、Bの 2 種類の試験体を用いている.断面種類Aは、断面寸法 150×150mm、純スパン長1.8mの複鉄筋RC梁である. 上下端鉄筋には SD345D13を2本ずつ配置している.ス ターラップには SD345D6を用い50mm間隔で配置してい る.断面種類Bは、断面寸法220×220mm、純スパン長 2.4mの複鉄筋RC梁である.上下端鉄筋には SD345D16 を2本ずつ配置している.スターラップには SD345D6を 用い50mm間隔で配置している.梁の下面には断面種類 A、Bともに表-2に示す保証耐力392kN/mのAFRP板を 接着している。断面種類A、BにおけるAFRP板の幅は、 それぞれ150および220mmであり、梁軸方向の補強範囲 は断面種類によらずスパン中央部から両支点の50mm手 前までとしている。

図-1 試験体の形状寸法, 配筋状況および補強概要

図-2には、コンクリート表面のせん断キーの配置状況を示している. せん断キーの幅および深さは、せん断キーの配置間隔や断面種類によらず、それぞれ 10 mm、5 mm と設定した. また、実験時におけるコンクリートの圧縮強度は断面種類 A 試験体は $f'_c = 38.6$ MPa、断面種類 B 試験体は $f'_c = 34.8$ MPa であり、軸方向鉄筋の降伏強度は $f_y = 373$ MPa であった.

表-3には,水中接着樹脂の力学的特性値の一覧を示している.本研究に用いた水中接着樹脂は,いずれも2種 混合型のエポキシ系接着樹脂であり,主剤,硬化剤とも にパテ状である.また,水中接着樹脂の接着性能は,土 木学会「連続繊維シートを用いたコンクリート構造物の 補修補強指針」³⁾における「連続繊維シートとコンクリー トの接着試験方法(案)」に準拠して評価した.

その結果,試験は母材コンクリートの引張破壊で終了 し,破壊時の強度の平均値は 2.6 MPa であった.この値 は,既設コンクリートの補修・補強用接着材料に関する 一般的な照査値 (1.5 MPa)を上回っている.従って,本実 験に用いた水中接着樹脂は接着材料としての性能を満足 しているものと言える.

2.2 RC 梁の水中接着補強方法および実験方法

RC 梁の水中接着補強は、大型の水槽を用いて RC 梁を 水没させた状態で行った。

水中接着補強における施工手順は以下の通りである.

- 1) 水中接着樹脂を混合し、厚さ4mm程度に成形する.
- 2) 気中で AFRP 板を所定の位置に配置し,その上に成 形した接着樹脂を敷き並べて一体化させる.
- 3) 水槽内に設置された RC 梁の接着面に 2) を配置し圧 着する.
- 4) 圧着した状態で5日間程度水中養生する.

なお,圧着は,専用の圧着装置を用いて,接着樹脂の厚さが3mm程度になるように施工した.

AFRP 板には既往の研究結果に基づき接着界面の付着 性能向上を目的に粗面処理として砂付き処理を行った.

図-2 せん断キー配置状況

AFRP 板の砂付き処理は、板表面に汎用の含浸接着樹脂を 塗布し、その上に5号珪砂を振り掛けて行った.なお、珪 砂の使用量は250 g/m² 程度である.また、コンクリート の接着界面処理としてはブラスト処理を行った.ブラス ト処理は専用のブラストマシンを用いて深さ1mm 程度の 処理とした.

載荷実験は, RC 梁を単純支持状態で設置し,容量 500 kNの油圧ジャッキを用いて4点曲げ載荷試験法により 行った.本実験の測定項目は,荷重,スパン中央点変位 (以後,変位)である.また,実験時には, RC 梁のひび割 れやシートの剥離状況を連続的に撮影し,実験終了後に は, RC 梁のひび割れを撮影した.

3. 実験結果と考察

3.1 荷重-変位関係

図-3には、各試験体の荷重-変位関係に関する実験結 果および計算結果を示している.計算結果は、土木学会

コンクリート標準示方書⁴⁾に準拠して断面分割法により 算出したものである.なお,計算ではAFRP板とコンク リートの完全付着を仮定している.また,水中接着樹脂 の厚さや力学的特性は考慮していない.

断面種類Aに着目すると、A梁の実験結果は計算降伏 荷重時まで計算結果とよく対応していることがわかる.し かしながら,計算結果よりも小さい荷重にて上縁コンク リートが圧壊し,その後AFRP板の部分剥離を生じるも のの,最終的にはAFRP板の破断により終局に至った.

A-G30 梁の実験結果は計算終局荷重時まで計算結果と よく対応していることがわかる.その後,A梁より大きい 最大荷重でコンクリートの上縁圧壊が起こるものの,こ の荷重レベルは計算結果に比べて若干小さくなっている. また,上縁圧壊の発生直後に部分剥離が顕在化し,その 後,AFRP板の全面剥離により終局に至った.

A-G60/90 梁の実験結果は計算終局荷重時まで計算結果 とよく対応していることがわかる.また,計算結果と同程 度の荷重で上縁コンクリートが圧壊し,その直後に AFRP 板の部分剥離が顕在化し,変位の増大に伴って剥離領域 が拡大して最終的には全面剥離に至った.

以上から, せん断キーの配置間隔を大きくすることに より, 付着性能が改善され耐荷性能が向上することが明 らかになった.

一方,断面種類Bに着目すると,B梁の実測降伏荷重 は計算降伏荷重よりも10%程度大きくなっており,また 計算結果よりも小さな荷重で上縁コンクリートの圧壊が 発生している。その直後に部分剥離が顕在化し,AFRP板 の全面剥離により終局に至っている。

B-G30 梁は計算降伏荷重時まで大略対応しているもの の,計算よりも8kN程低い荷重にて,上縁コンクリート が圧壊している.その直後に部分剥離が顕在化し,変位の 増大に伴って剥離領域が拡大して最終的には全面剥離に 至った.また,B-G60梁はB梁と同様に実測降伏荷重が 計算降伏荷重よりも10%程度大きくなっており,計算よ りも小さな荷重で上縁コンクリートが圧壊している. そ の後,全面剥離し終局に至っている.

B-G90/135 梁の実測降伏荷重は計算降伏荷重の15%程 度大きくなっている.また,計算結果よりも若干小さな 荷重にて上縁コンクリートが圧壊しているものの,せん 断キーの配置間隔が小さいものに比較して,最大荷重が 大きいことがわかる.また,部分剥離発生後も早期には ひび割れが開口せずに,部分剥離の進展が抑制されて変 位が増大したものの,最終的には AFRP 板の剥離により 終局に至った.

以上のことより、断面寸法にかかわらず、せん断キー の配置間隔を大きくすることにより、付着性能が改善さ れ耐荷性能が向上することが明らかになった.なお、断 面種類Bにおいて、実測降伏荷重が計算降伏荷重の10~ 15%程度大きい傾向にある.この原因としては、計算結 果にパテ厚を考慮していないことなどが挙げられるが現 在のところ不明である.今後検討する必要があるものと 考えている.

3.2 ひび割れ性状

写真-1には、各試験体のAFRP板剥離および破断直前 のひび割れ性状の一例を示している。写真より、AFRP板 とコンクリートの剥離は断面の種類によらず、載荷点近 傍の下縁かぶりコンクリート部で発生した斜めひび割れ がAFRP板を下方へ押し出し引き剥がすピーリング作用 により顕在化していることがわかる。

A 梁と A-G90 梁を比較すると、せん断キーの配置され ていない A 梁は変位が増大するとともに部分剥離が進展 していることがわかる.これに対し、せん断キーを配置し た A-G90 梁はせん断キーにより部分剥離の進展が抑制さ れ、ひび割れの開口が少ないことがわかる.また、B 梁と B-G90 梁を比較すると、せん断キーを配置した B-G90 梁 は B 梁よりも載荷荷重が 20 kN 程度大きいにもかかわら ず、B 梁と大差のないひび割れの開口を示し、せん断キー によって部分剥離の進展が抑制されていることがわかる.

写真-1 各試験体の補強材剥離および破断直前のひび割れ性状

図-4 等せん断力区間における AFRP 板の剥離挙動

図-5 荷重比とせん断キー配置間隔比との関係

図-4には、等せん断力区間における AFRP 板の剥離挙 動をモデル化して示している.せん断キーを配置しない 場合はコンクリートと水中接着樹脂との接着界面でひび 割れが発生している.これに対し、せん断キーを配置し た場合には、コンクリートと水中接着樹脂との付着が向 上し、ひび割れが水中接着樹脂と AFRP 板との接着界面 に移行したと考えられる.

なお、せん断キーの配置間隔が小さい B-G30 梁の耐荷 性能はせん断キーのない B 梁よりも劣っている.これは、 せん断キーの配置間隔が小さい場合には、せん断キー配 置箇所から微細なひび割れが多数発生し、それが水中接 着樹脂と AFRP 板界面における早期剥離を助長すること によるものと推察される.

3.3 せん断キーによる耐荷性能向上効果

図-5には、荷重比とせん断キー配置間隔比との関係を示している.ここで、荷重比とは実測最大荷重 Pu を計算

最大荷重*P*_cで除したものである.また,せん断キー配置 間隔比とはせん断キーの配置間隔*s*を断面高さ*h*で除し たものである.断面種類によらず,せん断キー配置間隔 比を大きくすることによって荷重比が増大することがわ かる.特に断面寸法が小さい場合にはその向上効果が顕 著になっている.また,本研究の範囲内では,断面寸法 によらずせん断キー配置間隔比を0.6程度にすることによ り,せん断キーによる耐荷性能の向上効果が大きくなる ことがわかる.

4. まとめ

本研究では水中接着補強工法における付着性能改善策 の提案を目的として、断面寸法を2種類に変化させ、コ ンクリート表面にせん断キーを設け、その補強効果を静 載荷実験により検討した.本研究により得られた知見を まとめると以下のとおりである.

- 本研究の範囲内では、断面寸法によらずせん断キーの配置間隔比を 0.6 程度にすることにより、せん断キーによる耐荷性能の向上効果が大きくなる。この 傾向は特に断面寸法の小さい梁で顕著である。
- 2) せん断キーがない場合は、コンクリートと水中接着 樹脂との界面で剥離するが、せん断キーを設けるこ とにより水中接着樹脂とAFRP板の界面に剥離が移 行する.また、この剥離は上縁コンクリートの圧壊 後に生じる.

参考文献

- 三上浩,岸徳光,栗橋祐介:水中硬化型接着樹脂 とAFRP版を用いて水中補強した RC 梁の静載荷実験, コンクリート工学年次論文集, Vol.32, pp.1327-1332, 2010.
- 池下 雄哉,岸 徳光,三上 浩,栗橋 祐介:せん 断キーを設けた場合のAFRP板水中接着曲げ補強 RC 梁の静的耐荷性状,コンクリート工学年次論文集, Vol.34, No.2, 2012
- 3) 土木学会:連続繊維シートを用いたコンクリート構造 物の補修補強指針、コンクリートライブラリー 101, 2000.
- 4) 土木学会:コンクリート標準示方書[設計編],土木学 会,2007.