東北地方太平洋沖地震発生時の 水位・潮位記録に基づく河川津波の考察

DISCUSSION ABOUT TSUNAMI IN RIVERS CAUSED BY TOHOKU-PACIFIC COAST

EARTHQUAKE BASED ON WATER LEVEL AND TIDE LEVEL ANALYSIS

(独) 土木研究所寒地土木研究所 〇正会員

)正会員 阿部 孝章 (Takaaki Abe) 正会員 吉川 泰弘 (Yasuhiro Yoshikawa) 正会員 平井 康幸 (Yasuyuki Hirai)

1. はじめに

2011年3月11日14:46(UTC+09:00)、Mw 9.0の 東北地方太平洋沖地震が三陸沖を震源として発生した。 この地震により発生した大津波は東北の太平洋岸に押 し寄せ、未曾有の大災害をもたらした。この津波に伴 い、岩手県・宮城県の河口付近に設置されていた水位 計は損壊した。そのため東北地方に来襲した河川津波 の規模を時系列的に、定量的に評価することは現状で は困難である。

一方、この地震による津波が到達したのは北海道も 例外ではない。北海道の1級河川では、河川津波による 水位変化は計8河川において確認された。その遡上距 離は最大で、石狩川において確認された36kmであっ たことが著者ら¹⁾により明らかにされている。しかし、 現状では河道内の水位記録と数値解析による検討が行 われているのみであり、実現象に基づく考察は一部し かなされていないのが現状である。そこで本研究では、 今次津波を対象に、詳細な水位記録、潮位記録、映像 記録や現地調査結果に基づき、北海道内での河川津波 の概況を明らかにすることを目的とした。

本論文ではまず、太平洋岸に河口を持つ新釧路川、十 勝川、鵡川、沙流川を対象に、水位・潮位記録を基に 遡上特性を検討する。これらの資料を踏まえ、現地に おいて確認された現象について考察を行った。

2. 水位・潮位記録の分析

図-1 中の河川において得られた水位記録から津波成 分を抽出し、沿岸部の潮位変動の影響にも着目しつつ、 観測された河川津波について検討を行った。

(1) 新釧路川

釧路川は湿原地帯を蛇行しながら南下し、途中新釧路川と(旧)釧路川に分流する。河口近くで仁々志別 川が合流し太平洋に注ぐ(図-2)。河床勾配は、釧路湿 原から新釧路川河口部までが 1/8,000~1/3,000 程度で ある。

a) 水位記録に基づく分析

図-3に、新釧路川における1分間隔水位記録から離 散 Fourier 変換(DFT)を利用して抽出した津波成分 による水位変動量を示した(縦軸のスケールを図中に 示した)。但し、WL は河川水位、H は着目した時刻に おける波峰とその後現れる波谷との水位差、η は津波侵 入前水位からの水位変動量を表す(全て単位は [m])。

図-1 津波遡上が確認された各流域の概況と、潮位観測所の 位置(◇で表示)及び参考値として津波第一波の到達 時刻(3/11)を示した(水位・潮位記録より推定)。

図-2 釧路川下流域とその支川の概況、水位観測所の位置

また本稿及び図中で、FW、Max は、各水位観測所で の津波による水位変動に関して、1度目の波峰、H が 最大の波峰をそれぞれ表す(沿岸部で記録される津波 本体の第一波、最大波と必ずしも一致しないことに留 意されたい)。灰色線は本地震の発生時刻を表す。グラ フ近傍に示した各 f_l 値は、±f_l[Hz]を境界として津波 成分・潮位成分を分離したことを示す。但し f_l は、各 成分を分離した際に潮位成分が滑らかに潮位を表せる ように試行を繰り返しつつ、決定した。

鳥取では 15:59 に FW による極大水位 1.08 m を記

図-3 新釧路川本川に設置されている水位観測所(鳥取、広 里、岩保木)の10秒間隔の水位記録からDFT 解析を 利用して抽出した津波成分(3/11 0:00~3/16 0:00)。

図-4 釧路港で観測された潮位と河道内水位観測所での水位 記録との比較(潮位記録は 15 秒間隔、河川水位記録 は 10 秒間隔)

録し、その後 FW は広里を 16:21 に、岩保木を 16:45 にそれぞれ通過したものと推測される。Max は 23:40 に鳥取、12 日 00:02 に広里、00:27 に岩保木を通過し ており、遡上速度は FW とほとんど変化していないと 言える。また、鳥取及び広里の水位記録において、津 波による変動が大きい時間帯と小さい時間帯が存在す ることが確認できる。これは田中ら²⁾の指摘にもある ように、満潮時と干潮時で、河川津波の遡上距離が変 化することに由来すると推察された。新釧路川に侵入 した津波による顕著な水位変動が見られたのは、地震 発生後、少なくとも 3 月 15 日までは継続したことが、 図-3 から読み取ることができる。

b) 河道内と沿岸域の水位変動の関係

安田ら³⁾は 2003 年十勝沖地震津波による港内(1分 記録)と河道内(10分記録)の水位変動との関係につ いて分析を行った。本研究ではこれを発展させ、それ ぞれ15秒、10秒間隔の水位記録に基づき検討を行う。 図-4より、釧路港潮位と各地点水位は同調して変動し たことがわかった。また、釧路港と鳥取はいずれも極 大水位において5分から7分程度の位相の遅れが確認 できた。これは釧路港から鳥取まで津波が到達するの に有した時間と同程度と考えられる。

また、津波振幅の観点から両者について見ると、港内 の津波は潮汐成分を境界に同規模の振幅を持つのに対 し、河道内では初期水位を下回ることは無かった。FW について、極大水位へ向かう際の水位時間変化量と、極 小水位へ向かう際のそれは大きく異なる。更にその傾 向はほぼ全ての波峰・波谷の組に対しても同様のこと

写真-1 新釧路川で撮影された河川津波の様子(KP.5.2 釧 路湿原大橋付近、2011/3/11 16:05 頃)。

図-5 十勝川下流域とその支川の概況、水位観測所の位置

が言える。これが新釧路川で確認された河川津波の一 つの特徴と言えよう。

c) 動画記録に捉えられた河川津波の推定

写真-1に示したのは、KP.5.2地点釧路湿原大橋付近 を FW の先頭部が通過する直前の動画を静止画化した ものである。左上に時刻を示した。この映像は KP.5.2 付近の左岸堤防上から、本川方向を撮影したものであ る。図-4に示す10秒間隔の水位記録からは読み取る ことができないが、FW は明瞭に分散波列を形成して いることが確認できる。その先頭波峰は砕波段波状と なっており白い飛沫に覆われているが、二番目の波峰 以降には見られない。画面中央部のポール位置を分散 波列の各波峰が通過する時間を元に、分散波列の周期 T_sを概算したところ、T_sは2秒から2.5秒であった。 また FW における分散波列の継続時間は 30 秒程度で あり、鳥取-広里間の平均遡上速度を図-4における波 峰の立ち上がり時刻から概算すると約3.5 m/sから4.0 m/s である。従って湿原大橋を FW が通過した際、分 散波列の継続距離は約110 m と見積もることができ、 分散波群の波長は約7mから9mと推定された。

村嶋ら⁵⁾は、2003年十勝沖地震津波により十勝川で 発生した分散波列を画像解析により分析し、延長を約 600m、波長を15mから25m⁵⁾⁶⁾と求めているが、上 記により明らかとなった新釧路川の分散波列は十勝川 のものと明らかに規模が異なる。また新釧路川で分散 波列が確認された例は既往研究では見られない。この 結果は、10秒間隔水位記録に捕捉されていなくても、 分散波列が生じ得ることを示唆するものである。

(2) 十勝川とその支川

+勝川は沖積平野を緩やかに蛇行した後太平洋に注 ぐ河川であり(図-5)、下流部において支川浦幌十勝 川が並行して流れている。

図-6 +勝川に設置されている水位観測所の10秒間隔水位記録からDFT解析を利用して抽出した津波成分(3/1114:00~3/160:00、時刻は時:分:秒で表示)。

図-7 釧路港で観測された潮位と十勝川での水位記録との比 較(潮位は 15 秒、河川水位は 10 秒間隔記録)

a) 水位記録に基づく分析

図-6 に十勝川における津波成分の記録(10 秒間隔 記録から抽出)を示した。大津では、地震発生から約1 時間 8 分後、15:54:10 に FW が捕捉されており、その η は 1.70 m と北海道内で見られた河川津波では最大の 変動を記録している。その約 30 分後、旅来に FW が 来襲したが η は 0.46 m と、大きく減衰したことがわか る。また十勝太においては、FW は大津に比較し 15 分 ほど遅れて到達しており、 η は大津より 1 m 小さい。

Max については、大津で 22:08:00、旅来で 22:29:30、 十勝太で 22:23:00 に極大水位を記録し、 η はそれぞれ 1.94, 1.07, 1.89 m であった。3 観測所において、複数 回の津波侵入が記録されているが、その周期 T_t は 30 分~1 時間程度までばらつきが見られた。また旅来に おける水位記録の振動は 3/12 の 11:00 頃一度消失した が、18:00 以降再び周期 1 時間程度の水位変動が観測さ れ始め、3/13 の 11 時前後まで継続した。その後また 水位変動が消失し、同日の夕方から再び変動が現れた。 この変動特性は、新釧路川の観測所と同様、潮位変動 の状態によっては津波が旅来まで伝播しないためと考 えられた。

b) 河道内と沿岸域の水位変動の関係

+勝川河口に近い潮位観測実施港として大津漁港、 +勝港が存在するが、津波来襲時は被災のため欠測と なっていた。そのため、ここでは次に十勝川河口部に 近い釧路港の記録と比較することとした。

図-7より、大津のFWに関しては、釧路港の津波と

図-8 鵡川・沙流川下流域とその支川の概況、水位観測所の 位置

図-9 鵡川・沙流川本川水位観測所の10分間隔水位記録(鵡 川が上段、富川が下段、3/110:00~3/160:00)。

位相が一致しており、水位変動量も類似している。し かし、大津と十勝太では河口からの距離、初期水位が 類似しているにも関わらず、FWのH,ηが大きく異な る。更に、大津では各波峰、波谷に高周波成分が現れて いるが、十勝太ではそれが顕著には現れていない。こ れは図-5に示したように、各水位観測所に到達するま での河道線形が影響していると考えられる。すなわち、 大津の方が十勝太より相対的に、沿岸域の潮位変動の 影響を受けやすいためと考えられた。また、河道内で は初期水位より水位が小さくなるのは大津のFWの後 に現れる波谷のみであり、それ以後については新釧路 川と同様、初期水位より高い水位が長時間継続した。

(3) 鵡川·沙流川

鵡川・沙流川は日高地方西部を流れ、南西に向かっ て太平洋に注ぐ河川である(図-8)。

a) 水位記録に基づく分析

図-9に示したのは鵡川・沙流川における10分間隔の水位記録である。水位観測所設置位置は2河川で河口からの距離が近く、また流向もほぼ類似している。鵡川・沙流川では、ほぼ同じ時刻にFWによる水位変動を記録している。ところが水位変動の過程は両者で大きく異なり、鵡川で一度1.75 mまで上昇した水位は緩やかに減少し12日の正午頃に極小値を記録し、再び上昇を始め、12日の22時頃に第二のピークが現れた。その時点から初期水位より50 cm程度高い水位が暫く継続し、16日までにかけ、ゆっくりと水位が低下している。このような水位変化はアイスジャムの解氷に由来する⁷⁾と推測された。アイスジャムの発生は現地踏 査による水位観測所付近の状況からも確認された(**写** 真-2)。写真に示したように鵡川では鵡川橋付近から下流にかけ、左右岸にそれぞれ砂州が発達している。そ

写真-2 河川津波に誘発されたと考えられる鵡川のアイスジャ ムの概況(3/13 16 時頃鵡川橋より撮影、写真右に KP2.55 右岸鵡川水位観測所が写っている)。

写真-3 アイスジャムの先頭部(KP.2.3付近右岸より撮影)

図-10 釧路港で観測された潮位と十勝川での水位記録との 比較(潮位は 15 秒、河川水位は 10 秒間隔記録)

のため KP.2.4 付近で水面幅が狭くなり、かつ流心が曲 がるように流れている。水面幅の狭くなった部分を右 岸側から撮影したものを**写真-3**に示した。元々全面結 氷していたと考えられる鵡川に津波が来襲し結氷が破 壊され、無数の浮遊氷板が発生し、引き波によって水深 の浅い、あるいは川幅の狭い地点で折り重なるように 堆積し、上流側の水位を上昇させたものと推測された。

b) 河道内と沿岸域の水位変動の関係

次に、鵡川河口から最も近い潮位観測実施港である 苫小牧港の潮位変動と、2河川の水位変動を比較した。 観測記録の取得間隔が異なるために明言は難しいが、 図–10より苫小牧港潮位が津波の影響で変動開始した 後に、鵡川・富川の水位変動が始まったことが確認で きる。振幅の面について両者を見ると、港内の振幅は 潮汐成分を境界に同規模であるのに対し、河川では新 釧路川、十勝川と同様に初期水位をほとんど下回って いない。FW の立ち上がりと、続く波谷への水位変化 傾向から、鵡川では FW の侵入直後に、アイスジャム が発生した可能性がある。一方で沙流川は、10分間隔 水位記録ながらも、波峰へ向かう水位変化と波谷に向 かう際では、波形勾配が後者の方が小さいことが確認 できる。

3. まとめ

本稿では、北海道太平洋岸に河口を持つ一級河川を 対象として、時間解像度の高い水位記録と沿岸域の潮 位記録を分析し、各河川への津波遡上の継続時間やそ の水位変動量の相互関係に関して検討を加えた。その 結果、河川津波における波形に関して、これまで明ら かにされていなかった、波形勾配の性質が明らかとなっ た。動画記録により、新釧路川では分散波列の発生が 確認され、更に鵡川においては、既往研究に類を見な い、河川津波によるアイスジャムの発生が認められた。

本地震は道内で震源から最も近い沙流川河口付近で さえ470km近く離れた三陸沖で発生した地震である。 3月は北海道では河川解氷期と言えるが、もし同規模 の地震が1,2月の厳冬期に十勝沖・釧路沖で発生した 場合には今回の規模を遙かに上回る津波が来襲し、氷 板を伴う大規模な内水氾濫が発生する可能性すらある。

河川津波の性質を理解するための研究は、以前から 多くの試みがあるものの、沿岸部からの接続部(河口) における伝播特性や寒冷地域における河川結氷との相 互作用等は、未だ充分に解明されているとは言い難い。 今後河川津波の性質に関して、水理学的な考察に基づ いたより一層の理解が望まれる。それらの蓄積により、 河川周辺の地域では沿岸部の防災対策と連携し、より 効果的な防災・減災対策立案が可能になると考えられ る。

謝辞:本論文を取りまとめるにあたり、国土交通省北 海道開発局 釧路・帯広・室蘭・稚内・小樽の各開発建 設部からは水位・潮位記録などを、災害直後の繁忙期 であったにも関わらず提供して頂きました。また気象 庁からは海洋気象台における潮位観測資料をご提供頂 きました。ここに記して感謝の意を表します。

参考文献

- 阿部孝章,吉川泰弘,安田浩保,平井康幸:2011 年東北 地方太平洋沖地震に伴い発生した津波の北海道内におけ る河川遡上,水工学論文集,2012(投稿中).
- 田中仁, Nguyen Xhuan Tinh, 盧敏, Nguyen Xuan Dao: 2010年チリ地震津波の東北地方河川への遡上-河 口地形と遡上特性との関連-,水工学論文集,第55巻, pp.1627-1632, 2011.
- 安田浩保,渡辺康玄,藤間功司: 2003 年 9 月の十勝沖 地震に伴い発生した津波の河川遡上,土木学会論文集, No.768/II-68, pp. 209-218, 2004.
- 4) 土木学会水工学委員会河川部会:東日本大震災津波災 害特別セッション「今次津波災害と河川技術」, URL: http://committees.jsce.or.jp/hydraulic01/node/44, 2011 年 12 月 16 日参照, 2011.
- 5) 村嶋陽一, 越村俊一, 岡秀行, 村田泰洋, 鈴木崇之, 今村 文彦: 非線形分散理論モデルによる十勝川津波遡上の再 現計算と空間分解能の検討, 土木学会論文集 B2(海岸工 学), Vol. 66, pp. 206-210, 2010.
- 6) 安田浩保:河川を遡上する津波の1次元解析手法の提案と 実現象への適用,水工学論文集,第50巻,pp. 1417-1422, 2006.
- 7) Jasek, M.: Ice jam release surges, ice runs, and breaking fronts: field measurements, physical descriptions, and research needs, *Canadian Journal of Civil Engineering*, Vol. 30, pp. 113-127, 2003.