気液二相流数値計算による風波生成過程へのケーススタディ

Case study process of wind wave generation by two phase flow numerical calculation

北海道大学大学院工学院	学生員	岩下厚志	(Atsushi	IWASHITA)
北海道大学大学院工学研究院	正員	渡部靖憲	(Yasunori	WATANABE)

1. はじめに

固定グリッド上での気液二相流計算について,多数の モデルが提案され,その殆どが混合体モデルをベースに したものである.混合体モデルは千倍異なる気液の密度 や粘性係数,並びに表面張力を界面近傍の数グリッドで 変化させ有意な厚さで境界を仮定している.この操作は 物理的な質量境界の変化を表しているわけではなく、数 値計算の安定性を向上させ計算を簡素化するための実践 的側面から図られるもので界面の不鮮明化に繋がる.そ れゆえ結果として取得する圧力や流速は,この領域でス ムーズに変化し、いわゆる smeared solution となり現 実の界面のダイナミクスを表現しない(図1参照).こ の問題は以前から指摘されてきた2)がこれに代わる計算 モデルがないのが現状である.また常に不連続,非等方 となる界面近傍では流れと界面の相互作用が重要であり、 これらが重要となる風波生成や砕波などに対して微視ス ケールの水面不安定や局所変形を支配する.

本研究は,気液界面の接線・法線の力学的境界条件を 満足させる数値計算スキームを開発し界面の力学的不安 定が支配する風波生成過程に適用し,本計算モデルの有 用性を検証し気液界面の現象に対する新たな知見の獲得 を目指すための基礎技術の確立しようとするものである. そして界面力学的不安定からなる界面現象理解に向け本 論文では気液の密度比を幾つかのケースに分け風波の生 成計算をするケーススタディを行った.

2.数值計算法

本計算モデルでは,気相と液相を別々に計算する二流 体モデルを採用する.計算領域を分けることで,界面近 傍における密度や表面張力を変化させることなく計算を 行える.支配方程式はNavier-Stokes 式とし,各相で独 立して流体計算を行う.なお,全ての変数は重力加速 度・水深・水の密度で無次元化している.

$$\frac{\mathbf{D}\mathbf{u}^{1}}{\mathbf{D}\mathbf{t}} = -\frac{1}{\mathbf{r}^{1}}\nabla\mathbf{p}^{1} + \mathbf{n}^{1}\nabla^{2}\mathbf{u}^{1} - \nabla\mathbf{t}^{1} - \mathbf{g} \quad \cdots (1)$$

ここで u は流速, p は圧力, は密度, は動粘性係数, はせん断力,g は重力加速度である.上付き a 及び l は気相,液相を表す.流体計算は各相で多段階分離解法 を適用し計算を行う.(1)(2)式ともに二段階分離する と非移流項(3)式と移流項(4)式を得る. 非移流項

HF19771L≯5

$$\frac{\partial \mathbf{u}_{i}}{\partial t} = -\frac{1}{r} \nabla \mathbf{p} + \boldsymbol{n} \nabla^{2} \mathbf{u}_{i} - \nabla \boldsymbol{t} - \mathbf{g} \quad \cdots \quad (3)$$

移流項

$$\frac{\mathrm{Du}}{\mathrm{Dt}} = 0 \quad \cdots (4)$$

非移流項について,発散をとるとポアソン方程式から圧 力を得,また予測子修正子法により流速を得る.移流項 について、CIP法により流速や乱れエネルギーの移流計 算を行う.

水面は Level-Set 法にて検出を行う. Level-Set 法で は次式により水面上でゼロ,液相で正,気相で負の値を 示す距離関数 を定義し(5)式に従いを移流させる.

$$\frac{\mathrm{D}\boldsymbol{f}}{\mathrm{D}t} = 0 \quad \cdots (5)$$

水面上の法線ベクトルn及び相互に直交する接線ベクトルs,t,曲率 は次の通り求める.

$$\mathbf{n} = -\frac{\nabla f}{|\nabla f|} \quad \cdots \quad (6)$$

$$\mathbf{k} = \nabla \cdot \mathbf{n} \quad \cdots \quad (7)$$

$$\mathbf{s} = \frac{\mathbf{u}_{\text{nearest}} - (\mathbf{n} \cdot \mathbf{u}_{\text{nearest}})\mathbf{n}}{\mathbf{n} \cdot \mathbf{u}_{\text{nearest}}} \quad \cdots \quad (8)$$

$$\mathbf{t} = \mathbf{n} \times \mathbf{s} \quad \cdots \quad (9)$$

ここで**u**_{nearest} は界面近傍の流速である.

3. 境界条件

∂t

本数値モデルでは気体流速と液体流速を別々に計算す るため,境界条件を解き,両相の界面を結合させる必要 がある.後述に示す気液界面境界条件は渡部ら(2011)と 同様に,界面から界面近傍の計算点に対して流速勾配を テイラー展開し仮定される界面上の流速勾配を境界条件 式に代入して解く.

3.1 接線方向の力学的境界条件

∂n |

接線方向の力学的境界条件は(10)(11)式で,気液界面に おける両相のせん断力の釣り合いを示している.

$$\boldsymbol{m}^{1}\left[\frac{\partial u_{n}^{1}}{\partial s}+\frac{\partial u_{s}^{1}}{\partial n}\right]=\boldsymbol{m}^{a}\left[\frac{\partial u_{n}^{a}}{\partial s}+\frac{\partial u_{s}^{a}}{\partial n}\right] \qquad \cdots (10)$$
$$\boldsymbol{m}^{1}\left[\frac{\partial u_{n}^{1}}{\partial s}+\frac{\partial u_{t}^{1}}{\partial t}\right]=\boldsymbol{m}^{a}\left[\frac{\partial u_{n}^{a}}{\partial s}+\frac{\partial u_{t}^{a}}{\partial t}\right] \qquad \cdots (11)$$

∂t

∂n ∣

式中の s,t は互いに直交する水面の接線方向の座標系 を,nは水面の法線方向の座標系を示している. 3.2 接線流速・法線流速の運動学的境界条件 接線流速・法線流速の運動学的境界条件を下式で表す. これは界面近傍の気液両相のズレや隙間を空けないため の付着・不透過条件である.

$$\mathbf{n} \cdot \mathbf{u}^{\mathrm{a}} = \mathbf{n} \cdot \mathbf{u}^{\mathrm{a}} \quad \cdots (12)$$

$$\mathbf{s} \cdot \mathbf{u}^{\mathrm{l}} = \mathbf{s} \cdot \mathbf{u}^{\mathrm{a}} \quad \cdots (13)$$

$$\mathbf{t} \cdot \mathbf{u}^{\mathrm{l}} = \mathbf{t} \cdot \mathbf{u}^{\mathrm{a}} \quad \cdots (14)$$

3.3 法線方向の力学的境界条件

法線方向の力学的境界条件を下式で示す.

$$p^{1}-p^{a}=2m^{1}\frac{\partial u_{n}}{\partial n}-2m^{a}\frac{\partial u_{n}}{\partial n}+sk$$
 ...(15)

は表面張力, は曲率とする.(15)式は圧力,粘性力 と表面張力とのバランスを表している.ここで界面上の 加速度は気液両相ともに等しいため下式としてよい.

$$\frac{\partial \mathbf{u}^{\mathbf{a}}}{\partial t} = -\frac{1}{\mathbf{r}^{\mathbf{a}}} \nabla \mathbf{p}^{\mathbf{a}} + \mathbf{n}^{\mathbf{a}} \nabla^{2} \mathbf{u}^{\mathbf{a}} - \nabla \mathbf{t}^{\mathbf{a}} - \mathbf{g}^{\mathbf{a}} \quad \cdots \quad (16)$$

(14)式から界面から 離れた計算点に対しテイラー近似 すると下式が仮定される.ここでP = p / rである.

$$\mathbf{P}^{\mathbf{a}} \equiv \mathbf{P}^{\mathbf{a}} | + \Delta \nabla \mathbf{P}^{\mathbf{a}} \cdot \cdot \cdot (17)$$

(15)式と(17)式から圧力の境界条件が与えられポアソン 方程式の逐次計算により両相の圧力を決定する.

4.ゴースト流速の外挿

ゴースト流速は下式から順次得ることができる.

$$|\mathbf{u}_{i}^{g} = \mathbf{u}_{i}|_{s} + \frac{\partial \mathbf{u}_{i}}{\partial \mathbf{x}_{j}}|_{s} \Delta \quad \cdots (18)$$

ゴースト流速は界面上において境界条件を満足するよう に規定されているため,この流速による界面の移流は気 液の相互作用をふまえた正しい流れ場を再現できる.

5.計算条件

本研究では気液の密度比 $\mathbf{r}^{a} / \mathbf{r}^{l}$ が 0.9 の場合の風波 生成計算を行った.計算領域は $2 \times 2 \times 2$ の矩形水槽で, 水槽側方は周期境界条件,底面は non-slip 条件として いる.水面は底面から 1.5 の位置にあり,初期擾乱を与 えていないので液相は完全な静水状態である.なお流速 は気相の水平方向に4与えている(図2参照).刻み時 間は dt=0.002 である.

図3 水平流速(上段)・乱れエネルギー(下段)鉛直分布 上下段ともに左側が液相,右側が気相

図4 気相渦度分布:上段が吹送方向と直交する スパン方向の,下段が吹送方向の渦度. それぞれ左から吹送開始後0.024s,0.060s

図5 液相渦度分布:上段が吹送方向と直交する スパン方向の,下段が吹送方向の渦度. それぞれ左から吹送開始後0.024s,0.060s

6.計算結果

図6 水面形状の時間変化:吹送開始後 0.012s(a),0.024s(b),0.048s(c),0.60s(d)

図3は水平流速と乱れエネルギーを水面に平行な面で平 均を取った値の鉛直分布を示している.線の色は凡例に 示した時間のもので,気相の水平流速は時間経過ととも に流速が小さくなっている.これは界面のせん断力によ るものだと考えられる.同様の理由で液相の水平流速は 時間経過とともに大きくなっている.図4は気相境界層 渦度を示す.計算初期では交互交代渦が発生し,時間と 共に大きくなっている.図5は液相境界層の渦度を示す. 界面付近には小規模なスケールのその下には大規模なス ケールの渦層を形成している.図6は各時間の水面形上 の時間変化を表している.時間変化にともなって水面変 動が大きくなっている様子がわかる.

6.結論

実際とは密度比の異なる気液二相流の風波生成過程計算 を行った.気液両相の流速はせん断力によって,時間と ともに変化した.水面に擾乱を与えることなく界面力学 的不安定からなる水面形状の変化を再現した.また吹送 開始初期において交互交代渦を再現した.これらの特徴 は著者らが計算した実際の密度比からなる風波生成過程 計算の結果と似た.

参考文献

- 1)Stuart D.Smith,Christopher W.Fairall, Gerald L.Geernaert,Lutzhasse,1996. AIR-SEA FLUXES:25 YEARS OF PROGRESS. Boundary-Layer Meterology 78:247-290
- 2)Sarpakaya, 1996.Vorticity, free-surface, and surfactants. Annu.Rev.Fluid.Mech.28:83-128
- 3)Longuest-Higgins M S 1992,Capillary rollers and bores,J.Fluid Mech.240,659-679

4)渡部靖憲・岩下厚志(2011):気液二相流の力学的境界 条件適合スキームの開発と風波生成過程への応用,第 58 回海岸工学講演会論文集,pp I_16