カルバートの流下阻害を考慮した想定氾濫区域の推定

~伊達市の事例~

Estimation of Flood Susceptible Area Considering Influence of Outflow Prevention by Calverts ~ Case Study in Date City~

室蘭工業大学	○学生員	北岡嵩浩	(Takahiro Kitaoka)
室蘭工業大学	正 員	中津川誠	(Makoto Nakatsugawa)
室蘭工業大学	正 員	太田典幸	(Noriyuki Ohta)

1. はじめに

近年,地球温暖化の影響とみられる集中豪雨が全国的 に増加傾向にあり,洪水被害が多発している.その中で も北海道は,本州に比べ降雨量自体は少ないため,ひと たび大雨に見舞われると,洪水被害を受けやすい.また, 近年では平成 15 年台風 10 号による記録的な集中豪雨が 発生し,日高・十勝地方で甚大な被害が発生した.今後 も各地でこのような洪水被害が多発する恐れがある.し かしながら,地方都市を貫流する中小河川は河川整備が 十分ではない例も多く増大するリスクに対しては,ハー ド対策だけでは人命や財産を守ることが難しくなってき ている.また,このような中小河川のうち,地方部にあ る市町村が管理するものは,データが乏しく洪水予測や 想定氾濫区域の設定といったソフト対策を講じるのも困 難な事例もある.

本研究は、そのような事例として伊達市の市街地を 貫流する紋別川、水車川、アヤメ川を対象とし、洪水に 伴う外水氾濫を想定した氾濫流の数値解析を行うことで 浸水域の推定を行うことを目的とする.また、流域に設 置されている水車川・アヤメ川合流部カルバート地帯に ついては数値解析に加え、模型実験により得られる結果 との比較・検討も行うこととする.

対象域の概要

2.1 伊達市及び解析対象河川

図-1に解析対象とした流域を示す.伊達市は北海道南 西部,札幌市と函館市のちょうど中間に位置し,室蘭市 と隣接しており,総面積は444.3km²である.噴火湾(内 浦湾)に面する伊達市域は,日本海から津軽海峡を通過 する対馬暖流の影響を受けるため,四季を通じて温暖で ある.また降雪量も少ないことから,積雪による交通障 害は本市においては極めて稀であり,厳しい冬の期間が 長い北海道において,温暖な気象条件を有していること から「北の湘南」といわれている¹⁾.

対象河川である紋別川は流域面積12.5km²,流路延長 7.9kmの2級河川気門別川の支流であり,河口から約 4.3km上流で分流堰により分流され6割が気門別川へ4割 が旧紋別川へ流れ込む(地点⑥).なおこの分流後を旧 紋別川と称する.旧紋別川は流域面積2.1km²,流路延長 4.9kmで河口から約250m上流で水車川と合流(地点⑦) した後,気門別川と合流(地点⑧)する.同川は下流端

図-1 紋別川・水車川・アヤメ川流域

から約5.5km上流まで両岸にコンクリート護岸を有する 河道となっている.

水車川は流域面積 1.7km², 流路延長 7.4km であり, 最上流部で紋別川から水門で取水している(地点①). 同川は紋別川合流地点より約 4.4km 上流でアヤメ川と 自然分流(地点②)した後,支流竹原川と合流し,国道 37 号線と交差する地点で再びアヤメ川と合流(地点 ④)し、旧紋別川に流れ込む.なお、同川は全区間が掘 込河道である. また, 同川は大雨発生時には水門によっ て紋別川からの流入を防いでいる.水車川流域では黄緑 で示された部分に水車・アヤメ自然公園が設けられてお り、その公園内を自然河道の形態で流れている.水車・ アヤメ自然公園下流の中流域では図-1の赤十字で示さ れた地点に伊達赤十字病院があり,その両脇にコンクリ ート三面張矩形断面の水車川とアヤメ川が流れている. とくに図-1 の流域Vでは市役所など重要施設が立ち並 ぶ市街地を貫流している. なお,計算に必要な流域分割 を行い各小流域にⅠ~Шの番号を付けることとする.

2.2 対象域におけるカルバート部

対象とした流域における,水車川流域,アヤメ川流 域の一部において,ボックスカルバート,パイプカルバ ート等の河川の暗渠となるような構造物が設置されてい る.水車川の下流から SP300, SP350, SP410 の地点に はボックスカルバートが配置されており,それらの諸量 は図-2 のようになっている.また,水車川とアヤメ川 の合流部には水車川 SP900,水車川 SP910,アヤメ川

図-2 水車川・アヤメ川合流部より 下流域のカルバート諸量

図-3 水車川・アヤメ川合流部のカルバート諸量

SP0 の3箇所のカルバートにより構成されているカルバ ート地帯がある. それぞれのカルバートの形状は, 水車 川 SP910 カルバート, アヤメ川 SP0 カルバートはボッ クスカルバートとなっているが、両河川の合流部は一部 開口しており、河川合流後に水が流下する水車川 SP900 カルバートはパイプカルバートの形状をとっている. た だし、水車川 SP900 カルバートの流入口は水車川・ア ヤメ川の合流点の河床高より 0.1m 低い位置に配置され ており, 合流部のカルバートの流下能力を算出する際は その位置関係も考慮に入れた. 図-3 にこれらのカルバ ートの諸量を示す. ここに示したカルバートの諸量は現 地測量の結果から得られた数値であり、ボックスカルバ ートロは矩形断面として流下能力を推算した. この図に おけるAは流水面積,Rは満管時の径心,Lは流路長, I は河床勾配, n は Manning の粗度係数, Q は最大流下 能力である.

3. 解析手法

3.1 50 年確率雨量強度の推定

伊達市における洪水氾濫解析を行うに当たり,確率雨 量強度の設定を行う.雨量の設定は別途行われた気門別 川流出計算に準拠し,伊達市に隣接する室蘭市の雨量デ ータ(統計年 1923~1989 年)から確率雨量強度曲線を 描き,キミジマ式より 50 年確率雨量強度式を導き出し た²⁾.

3.2 ピーク流量の推定

(1) ハイドログラフからピーク流量の推定

合理式以外の流出計算を用いる場合の計画降雨波形 は、実績降雨波形の引伸し方式により決定することを基 本とするが、本研究では降雨強度式からハイエトグラフ を作成する.本研究では氾濫計算にて越流時間と洪水越 流高を必要とするため、洪水到達時間を時間間隔とする 中央集中型のハイエトグラフを作成し、合成合理式を用 いてピーク流量を算出した³⁾.

(2) 流量の推定

対象河川流域内には、水文観測所がないため、合理 式より各流域の流量を得た.流域Ⅲ, V, WI, WIと流域 Ⅳの一部の流域面積は、市街地部分を下水道排水区面積 とした.

(3) カルバート流下能力の推定

水車川 SP300, SP350, SP410, SP900, SP910 とアヤ メ川 SP0 の 6 箇所の地点においてカルバートが配置さ れている. カルバート内の流れは管水路として取り扱い, 以下の(1) 式によりそれぞれのカルバートの最大流下 能力を求めその結果に基づきカルバート地点ごとの流入 量と流下能力の比較を行った.

$$Q = \frac{1}{n} R^{\frac{2}{3}} I^{\frac{1}{2}} A \tag{1}$$

ここに, *Q* は最大流下能力(m³/s), *R* は満管時の径深 (m), *I* は河床勾配, *A* は流水面積(m²)であり, *n* は Manning の粗度係数として水路の材質や状態を考慮して 0.02 を与えた. なお, 流下能力の計算に用いられる諸 量については現地測量により得られた数値を使用するこ ととする.

3.3 洪水時水位の算定

前節で求めたピーク流量に対し,各対象区間の水位 を求めるため,限界水深と等流水深の比較によって常射 流を判断し,100m 間隔で不等流計算を行うことで越流 地点及び水位の決定を行った.

3. 4 洪水氾濫流解析

(1) 外水氾濫流解析の基礎方程式

ĉ

氾濫流の数値解析は、平面二次元流れとして扱い、 計算法には差分法を用いる.基本方程式は以下に示す連 続式(2)式と運動方程式(3)及び(4)式を用いる.

$$\frac{\partial h}{\partial t} + \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} = 0$$
(2)

$$\frac{\partial M}{\partial t} + \frac{\partial}{\partial x} \left(\frac{M^2}{h} \right) + \frac{\partial}{\partial y} \left(\frac{MN}{h} \right) = -gh \frac{\partial H}{\partial x} - \frac{gn^2}{h^{\frac{N}{3}}} M \sqrt{M^2 + N^2}$$
(3)

$$\frac{\partial N}{\partial t} + \frac{\partial}{\partial x} \left(\frac{MN}{h} \right) + \frac{\partial}{\partial y} \left(\frac{N^2}{h} \right) = -gh \frac{\partial H}{\partial y} - \frac{gn^2}{h^{\frac{N}{3}}} N\sqrt{M^2 + N^2}$$
(4)

ここで, *M*, *N*は*x*, *y*軸方向の流量フラックス(m²/s) で *M*=*uh* および *N*=*vh*, *u*, *v* は *x*, *y* 軸方向の流速 (m/s), *h* は水深(m), *H* は水位(=h+ Z_b)(m), *g* は重力加速度(m/s²), *n* は Manning の粗度係数, *h* は 水深(m), *Z_b* は地盤高(m) である.

(2) 標高及び土地利用データの作成

氾濫流の解析を行うには、上記の(3)及び(4)式 に示す地盤高 Z_b及び粗度係数の n をメッシュデータ化 する必要がある.この際の計算メッシュは、格子間隔 10m の直交正方格子とする.対象領域は,想定される 氾濫域を網羅した x 方向に 1.32km, y 方向に約 1.83km とする(計算に用いたメッシュ数は 21,306).標高デ ータは1mメッシュのレーザープロファイラデータを 10 mメッシュに加工して作成する.また,土地利用状況は, 航空写真より標高データと同様のメッシュ内で建物や道 路等の占有率の高いものを代表値として目視で判読し, 道路を 0.020,水域を 0.040,建物(粗)を 0.040,建物

(密)を 0.100,公園・空き地を 0.025,山林を 0.100 と してメッシュごとに粗度係数を与え作成した⁴⁾.

3.5 水車川・アヤメ川合流部模型実験について

(1) 模型実験の概要

上述した通り水車川・アヤメ川の合流部には水車川 SP900,水車川 SP910,アヤメ川 SP0 の3箇所のカルバ ートにより構成されているカルバート地帯がある。洪水 時,これらのカルバートへの流入水が全量流れきらない ことにより起こる越流は,水車川と交差して通っている 国道 37 号線に沿って流域に大きく広がことが予想され るため,このカルバート地帯での越流による被害は流域 の住民にとって甚大なものとなる恐れがある.

本研究では、この水車川・アヤメ川合流部カルバートの流下能力を詳細に検証するため模型実験を行い、流域に洪水時の流量が流れた場合のそれぞれのカルバートにおける越流の挙動についての検討を行う.

(2) 模型の概要

本研究では模型の大きさを 1/35 の縮尺にし,現地の 水の流れと同様の挙動を表すためにフルード相似に則っ た材質,形状を選択し水車川・アヤメ川流域を模擬した 実験装置(**写真-1**)を作成する.

模型により再現した範囲は、図-4 に示すように水車 川 SP900,水車川 SP910,アヤメ川 SP0 の3箇所のカル バートを流域に含んだ 38.5m×48.3m の範囲(模型上で 1.38m×1.10m)であり、模型通水面の素材にはアクリ ルを採用し、越流・流下した水は貯水槽に設置されてい るポンプにより流域を循環する構造となっている.また、 模型にはそれぞれのカルバートの両岸に集水枡が設けて あり、越流地点ごとに仕切りが設けてあるため、越流量 はカルバートごとの計量が可能である.

(3) 越流量・流下量ハイドログラフの作成方法

水車川・アヤメ川合流部模型実験における水車川 SP900 カルバート地点での越流量,アヤメ川 SP0 カルバート 地点での越流量,水車川 SP900 カルバートを流下した 水量のハイドログラフの値は,図-5 に示すように,計 算により得られた 50 年確率雨量強度における水車川・ アヤメ川合流部流域へ流れ込む流量を示したハイドログ ラフより,経過時間 0.5h 毎の流量を定常的に模型に流 すことにより得られた値により作成した.

4. 解析結果

(1) 越流量の与え方

想定氾濫区域図の作成において,越流量は,以下のように与えた.

写真-1 水車川・アヤメ川合流部模型

縮尺1/35で再現した範囲(模型範囲1.38m×1.10m) 図-4 模型全体平面図

図-5 模型実験で検討した流量

- ① 洪水時の流れが河岸を越えることによる越流は、不 等流計算により得られた越流水深を本間の越流公式 に代入することで算出した⁴⁾.
- ② カルバートへの流入水が全量流れきらないことによる越流は(5),(6)式に示すように,流入量と流下能力の差分量と水位の関係から水位を逆算し,水位と地盤高の比較により分配することにより越流量を決定した.

$$Q = Q_1 + Q_2 \tag{5}$$

$$Q_1 = KL(H - Z_1)^{\frac{3}{2}}, Q_2 = KL(H - Z_2)^{\frac{3}{2}}$$
(6)

ここで、*Q* は流入量と流下能力の差分量 (m³/s) で *Q*₁ および *Q*₂ は各々左岸越流量と右岸越流量 (m³/s), *H* は河川水位 (m), *K* は越流係数⁵⁾, *L* は越流幅 (m), *Z*₁および *Z*₂ は各々左岸地盤高と 右岸地盤高 (m) である.

(2) カルバートの影響を考慮しない場合

図-6 にカルバートの影響を考慮しない場合の想定最 大氾濫区域図を示す.計算結果から,氾濫域の総面積は 336,000m²(33.6ha)となることがわかった.また,水 車川上流域の地域では,道路や空き地に沿って氾濫域が 広がっている様子がみられるが,下流部では道道982号 線沿いに商店街,道道779号線沿いに飲食店街や家屋が

図-6 カルバートの影響を考慮しない場合の 想定最大氾濫区域図

図-7 カルバートの影響を考慮した場合(数値解析)の 想定最大氾濫区域図

立ち並び,図中の網代町で氾濫域が広がることが予想される.

(3) カルバートの影響を考慮した場合(数値解析)

図-7 にカルバートの影響を数値解析により考慮した 場合の想定氾濫区域図を示す.計算結果から,氾濫域の 総面積は 494,600m² (49.4ha)となり,カルバートの影 響を考慮しない場合に比べて約 1.5 倍の範囲に氾濫が広 がることがわかった.上流域の地域ではカルバートの影 響を考慮しない場合と同様に,道路や空き地に沿って氾 濫が広がっている様子がみられるが,下流部では溢れた 水が標高の影響をうけつつ,国道 37 号線に代表される 道路に沿って広範囲に広がり,標高の低い地域では河川 から離れた住宅地にまで被害が広がることが把握できる. 数値解析における水車川・アヤメ川合流部への流入水の 総量が 92,600 m³ であるのに対し,カルバートの影響に よる越流の総量が 40,700m³ であるということから,カ ルバート部の流域への影響は甚大であるということがわ かった.

(4) カルバートの影響を考慮した場合(模型実験)

図-8 にカルバートの影響を模型実験により考慮した 場合の想定氾濫区域図を示す.計算結果から,氾濫域の 総面積は 299,400m² (29.9ha)となり,カルバートの影 響を数値解析により考慮した場合と異なる結果となった. カルバートの影響を数値解析により考慮した場合と模型 実験により考慮した場合を比較すると,カルバートの影 響を数値解析により考慮した際,流域に甚大な被害を与

図-8 カルバートの影響を考慮した場合(模型実験)の 想定最大氾濫区域図

えると予想された水車川 SP900 地点カルバートでの越 流が、模型実験ではほとんどなく、そのかわりにアヤメ 川カルバート部の越流量と、水車川 SP900 より下流域 への流下量が数値解析での検討より増加する結果となっ た.数値解析により検討した場合では水車川下流域での 予想越流地点はないが、模型実験により考慮した場合で は水車川下流域での越流が予想されるといった結果とな った.模型実験におけるカルバート地帯の影響による越 流の総量は 35,400m³と、数値解析により検討した場合 より 5300m³少ない値が得られた.

5. まとめ

以下に本研究の成果をまとめる.

- 分合流する複雑な河川流域において、10m メッシュの緻密な地盤高データを用いることで、詳細な氾濫流の挙動を表現できた。
- 2)対象河川に設置されているカルバート部での越流の 検討を行うことで、カルバートを考慮しなかった場 合との氾濫区域を比較し、それぞれの被害の差異に ついて確認することができた。
- 3) カルバートによる流下阻害の他に河川の合流形状に よる流下阻害が作用し、流域における越流の仕方は 数値解析と異なった形をとるということが実験によ り検証された.

6. 謝辞

本研究にあたり,貴重なデータを提供して頂いた室蘭 建設管理部,伊達市建設部および水道部の関係各位に感 謝の意を表わす.

参考文献

- 伊達市ホームページ 伊達市の概況, http://www.city.date.hokkaido.jp
- 2) 北海道土木河川課監修,北海道の大雨資料, pp.79, 1989.
- 3) 国土交通省河川局河川課,中小河川浸水想定区域図 の作成の手引き, pp.30, 2005.
- 4) 宮本冬馬:データの少ない地方部河川の想定氾濫区 域の推定~伊達市の事例~,平成 21 年度土木学会 北海道支部論文集,2,2010.
- 5) 水理公式集一昭和 60 年度版一, pp.293, 1985.