流路網形成過程に関する基礎的水理模型実験

Hydraulic experiment on formation process of channel network.

北見工業大学工学部社会環境工学科	○ 学生員	島	絵梨子	(Eriko Shima)
北見工業大学工学部社会環境工学科	正会員	渡邊	康玄	(Yasuharu Watanabe)
北見工業大学大学院工学研究科土木開発工学専攻	学生員	福岡	将太	(Shota Fukuoka)

1. はじめに

一般の河川には、平常時に流水が存在する流路網が形 成される。流路形状は流れに基づいて決定されており, 流量の変動によって変化する。そのため、近年の局所的 豪雨などによる流量の増加で、流路形状が大きく変化す ることが推察される。現在の流路幅は、維持管理の点か らも、従来河川が形成してきた川幅に基づいて決定され てきているが、流量が大きく変動した場合にはこれまで 河川自身が形成してきた形状が維持管理上好ましいとは 限らなくなる。従って、今後河道管理を実施していく上 で、安定的に河道を維持できる川幅や蛇行形状と水理量 との因果関係を解明することは非常に重要である。流量 と川幅の関係に関しては、河岸満杯流量の 0.5 乗に比例 するとするレジーム則や、動的平衡状態における礫河川 における測岸部の静的安定条件を用いた理論式¹⁾²⁾³⁾で表 わされている。レジーム則については、藤田 ⁴が安定流 路の幾何形状について次元解析により、その妥当性を検 証している。また山本⁵は、改修等によって人工的に川 幅が変化した河道の応答について実際の河川データに基 づいて解析し、川幅は流量と摩擦速度に規定されており, 水理量が変化しない場合には河川自身が形成した川幅に 戻るということを示している。河川の分岐現象や川幅の 決定機構に関しては、渡邊ら %により河道の横断的な形 状の安定という視点から線形安定理論を適用した川幅の 自立形成機構に関する研究が進められている。しかし、 流路網の形成過程や川幅の決定機構に関する研究は実験 例も少なく、実現象では解明されていないのが現状であ る。

本研究では、分岐合流を含む流路網と流量の因果関係 について明らかにしようとするものである。

2. 水理実験の概要

(1) 実験方法および条件

流量 Qを一定に保ったまま長時間通水し、流路形状 がどのように変化していくのかを把握することが本実験 の目的である。実験に用いる水路は、図-1に示すよう な、長さ 14m、幅 1.6mの直線水路である。用いた河床 材料は、平均粒径 d_m が 0.765mm の均一な 4 号硅砂で ある。この河床材料を水路に敷き詰めて、河床勾配 1/100 の初期河床を形成した。水路の上下流端には初期 河床高と同じ高さの固定堰を設置している。通水時間は 16 時間とし、流量は一定で、初期の無次元掃流力 z_* が 限界掃流力 z_* 。をわずかに上回るように定めた。通水中 に流路形状を測定するには、一旦通水を停止させる必要 がある。本実験では、河床の変化過程を把握するため、

図-1 実験水路の模式図

河床高の測定のたびに通水を一旦停止し、流路網形成を 継続させた。

(2) 測定項目

実験での測定項目は、河床高、流量、給砂量である。 河床高の測定は、通水 4 時間ごとに、水路下流端 11. 9 m 地点から上流端までの縦断距離で約 12m の区間に ついて、縦断方向に 10cm、横断方向に 1cm 間隔でレー ザー砂面計を用いて行った。流量の測定は下流端におい て、実験条件を満たしているかを確認するため、30 分 ごとに測定を行った。

3. 実験結果と考察

(1). 時間経過による流路網形状の比較

形成された流路網の様子を示したのが写真-1である。 上流、下流の影響を受けていると推察される区間を除く、 上流 5mから 11mまでの区間での河床測定断面ごとの流 路数、全流路幅、最大流路幅、平均流路幅、最大洗掘深、 平均洗掘深を図-2~図-7に示す。本実験では通水時 の水面形を測定できなかったことから、明確に流速が存 在する初期河床から3mm 以上洗屈している箇所を流路 とみなした。流路幅については、各断面の水路における 流路幅の合計を全流路幅、最大値を最大流路幅、平均値 を平均流路幅とした。洗掘深については、各断面の水路 における最大値を最大洗掘深、平均値を平均洗掘深とし た。流路数は、およそ100cmごとに周期性があること が読み取れ、時間の経過とともに、流路数は減少傾向に あることがわかる。流路数を経過時間ごとに平均すると、 4時間目におよそ 4.5 本だったものが、16時間目にはお よそ3.5本になっていることがわかった。

平成23年度 土木学会北海道支部 論文報告集 第68号

図-4 全流路幅の時間変化

図-11 経過時間ごとの洗掘深の平均値

全流路幅、最大流路幅、平均流路幅は時間が経過する に従って、増大する傾向が見られる。特に、16時間が 経過した時点での最大流路幅は、上流端から下流にお よそ850cmの地点から大きく増大していることがわ かる。最大洗掘深は、時間変化による大きな変化は見 られなかった。平均洗掘深は、16時間目の上流端から 下流におよそ900cmの地点から大きく洗掘している ことが読み取れる。これは後述するように、側壁の影 響を受けているとも考えられる。最大洗掘深、平均洗 掘深の平均値では、時間経過による大きな変化は見ら れなかった。

次に、流路形状の形成過程を図-8にコンター図の 変化で示した。時間経過とともに、一波長がおよそ 6 mの蛇行した、比較的明瞭な流路が確認できる。また、 左岸側 400 cm~1000 cmの地点が、他の部分と比較 すると大きく洗掘していることが読み取れる。この個 所と上述の最大洗掘深が時間的に大きく変化した個所 は、蛇行した流路の横断方向への移動が側壁により制

図-9 主要波成分の時間変化

図-10 河床波の主要成分合成模式図の時間変化

約を受けた個所とも一致している。水路幅が広ければよ り明確な蛇行形状をした流路網が形成されると推察され る。

(2) 河床の形状特性

河床波の形状特性を把握するため、2 重フーリエ解析 を行った。水深で無次元化された初期河床からの変動量 $\tilde{\eta}$ を式(1)で表わし、各波の振幅 a_{ij} の大きさを比較する ことにした。

$$\widetilde{\eta} = \sum \sum \alpha_{ij} \sin \left(i \frac{2\pi}{2\widetilde{B}} \, \widetilde{y} - \frac{\pi}{2} \, \delta_{ie} \right) \cos \left[j \frac{2\pi}{\widetilde{L}_b} \left(\widetilde{x} - \widetilde{\delta}_{ij} \right) \right] \tag{1}$$

ここで、i,j はそれぞれ横断方向 \tilde{y} および縦断方向 \tilde{x} の 波、 δ_{ii} は波数 ijの位相であり、 δ_{ie} は式(2)で表わされる。

$$\delta_{ie} = \frac{\left|1 + (-1)^{i}\right|}{2} \tag{2}$$

経過時間ごとに河床波を解析した結果を図-9に示す。 a_{01} 、 a_{10} 、 a_{11} 、 a_{20} 、 a_{21} 、 a_{40} 、 a_{60} の7つの成分が主に卓 越しており、経過時間によって卓越している河床波の成 分が異なることがわかる。 a_{01} 、 a_{10} 、 a_{21} 、 a_{60} の4つの成 分は、最終的に減衰していることが読み取れる。 a_{11} 、 a_{20} 、 a_{40} は最終的に増加し、特に a_{11} は、8時間目以降から卓 越し、最大値を持つ成分となっている。

次に、各成分の形状を足し合わせたものを模式的に示 したものが図-10である。4~8時間目には4本、12~ 16時間目には3本の流路が形成されている。

(3) 実験における水路幅と理論における川幅の関係

流路幅と水理量とを結び付けるため、理論的に導かれ た渡邊ら⁶⁾の安定解析に基づく基本川幅と、実験で得ら れた流路幅を比較する。渡邊らの基本川幅は、横断方向 に微小な振幅を持つ波を摂動解として与え、それらの発 達時間を調べる線形安定解析の手法を適用して得られた 川幅である。川幅一定の直線水路における拡散項を省略 した定常2次元浅水式と連続の式および掃流砂を対象と した流砂連続式を、平坦河床上の等流の諸元を基に無次 元化を行うと以下の式(3)~(6)で表わされる。

$$\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} + \frac{\partial H}{\partial x} + \frac{\tau_x}{D} = 0$$
(3)

$$\frac{\partial V}{\partial t} + U \frac{\partial V}{\partial x} + V \frac{\partial V}{\partial y} + \frac{\partial H}{\partial y} + \frac{\tau_y}{D} = 0$$
(4)

$$\frac{\partial D}{\partial t} + \frac{\partial (UD)}{\partial x} + \frac{\partial (VD)}{\partial y} = 0$$
 (5)

$$\frac{\partial \eta}{\partial t} + Q_0 \left(\frac{\partial Q_{bx}}{\partial x} + \frac{\partial Q_{by}}{\partial y} \right) = 0 \tag{6}$$

A を摂動パラメータとして(U,V,H,D)を式(7)で示される ように等流時の値と摂動量とに分ける。

$$(U,V,H,D) = (1,0,H_0,1) + A(U_1,V_1,H_1,D_1)$$
(7)

摂動量については、式(8)で表わす横断方向に波長*Ĩ*を 持つ微小攪乱を与える。

$$(U_1, V_1, H_1, D_1) = (C_1 u_1, S_1 v_1, C_1 h_1, C_1 d_1) E_1$$
 (8)

ここで

$$(S_1, C_1, E_1) = (\sin(\lambda y), \cos(\lambda y), \exp(rx + \omega t))$$
⁽⁹⁾

$$\lambda = 2\pi \frac{D}{\widetilde{I}} \tag{10}$$

この安定解析を行い、等流水深 \tilde{D}_0 と基本川幅 \tilde{B} に対す る時間増幅率 ω のコンター図を図-11に、等流水深 \tilde{D}_0 を実験条件である 0.005mとした場合の川幅 Bと時間増 幅率 ω の関係を図-12 に示す。渡邊ら⁶⁾の研究により、 実河川データおよびレジーム則との比較で、I=1/250の 場合には r=0.1~0.2 がほぼ一致する傾向を示すことが わかっている。r に関してはまだ十分に解明されていな いが、本実験の河床勾配は I=1/100 であるため、最も再 現性が高いと判断される r=0.15 を適用した。川幅 ãを 固定した場合の時間増幅率 ω の等流水深 Ď₀に関する変 化を見ると、増幅率に関して特異点が存在する。この値 を図-11 に併せて記している。図-12 からは、基本川 幅 Bが 0.45mのときに特異点を持っていることがわか る。本実験で用いた水路の水路幅は 1.6mであるので、 横断方向におよそ3.6本の流路が形成されることになる。 実際に実験で形成された流路は、実験開始から 16 時間 後に平均で3.5本となり、理論値と一致する結果を得た。

4. まとめ

本研究では流路網と流量の因果関係について明らかに することを目的に水理実験を行った。実験の結果、時間 変化とともに一波長がおよそ6mの蛇行した、比較的明

瞭な流路が形成された。また、実験で得られた流路数と 理論によって得られた基本川幅の本数が一致した。しか し、今回は1ケースのみの実験であるので、今後は様々 なケースの実験を重ね、流路網と流量の因果関係につい てさらに検討していく必要がある。流路網と流量の因果 関係が明らかになれば、今後の地球温暖化による流量変 動を見越した河道管理に対して、維持管理が容易な川幅 の設定が可能となる。そのため、本研究は河川維持管理 の観点より、重要な位置づけになりうると考えられる。

謝辞:本研究は、科学研究費補助金基礎研究(B)(代 表:泉典洋、課題番号:23360209)の助成を受けて行わ れた。記して謝意を表す。

参考文献

- Paker,G:Self-formed straight rivers with equilibrium bank and mobile bed,Part 2.The gravel river,JFM,vol.89, pp.127-146,1978.
- 池田駿介,Gary PARKER,千代田将明,木村善孝:直線 礫河床河川の動的安定横断形状とそのスケール,土 木学会論文集、375,II-6, pp.176-126,1986.
- 泉典洋,池田駿介:直線砂床河川の安定横断形状,土. 木学会論文集,429,Ⅱ-15,pp.57-66,1991.
- 藤田裕一郎:沖積河川の流路変動に関する基礎的研究,京都大学学位論文,1980.
- 山本晃一:沖積河川学-堆積環境の視点から,山海 堂,1994.
- (6) 渡邊康玄,早川博,清治真人:安定解析に基づく川幅 の自立形成機構,水工学論文集,第53巻,2009.