残留応力を考慮した鋼製斜張橋タワーの地震応答性状に関する研究

Nonlinear Seismic Response of Steel Tower of Cable-Stayed Bridge in Consideration of Residual Stress

北海道大学大学院工学研究院	○F会員	林川俊郎(Toshiro Hayashikawa)
北海道大学大学院工学研究院	正会員	松本高志(Takashi Matsumoto)
北海道大学大学院工学研究院	正会員	何興文(Xingwen He)
北海道大学大学院工学院	学生員	古屋敷祐介(Yusuke Furuyashiki)

1. まえがき

斜張橋は、塔から斜めに張られたケーブルにより補剛 桁を吊る構造形式である。その構造形式ゆえ設計の自由 度が大きく、経済的な設計、合理的な架設、多様な景観 設計が可能である。しかし、斜張橋はその複雑な構造形 式から、地震に対して非常に複雑な振動系を呈する。そ のため大規模地震に対する斜張橋の動的応答性状を正確 に把握し、耐震性能を向上させることが必要とされる。

近年、熱間圧延や溶接の技術が向上したために、斜張 橋の鋼製タワーには軽量で高強度な薄肉鋼板が広く用い られている。しかし、薄肉鋼板を用いた鋼製構造物の動 的応答性状は初期不整の影響を受けやすい。ここで、初 期不整とは初期たわみと残留応力のことを示し、構造物 の製作施工過程において発生するとされている。本研究 で対象としている残留応力は、工場における薄肉鋼板や 構成ブロックの製造過程での熱間圧延や溶接、または施 工中に行う現場溶接が原因で発生すると考えられる。鋼 製タワーのような薄肉鋼板を用いた構造物の耐荷力曲線 は、残留応力によってかなり低下することが理論的、実 験的に知られている¹⁾²⁾。また、このような薄肉鋼板を 用いた構造物の大地震に対する耐震性能は、強度と靭性 の両方に依存すると考えられる。よって、斜張橋のさら なる安全性の向上を目的として、鋼製斜張橋タワーの動 的応答性状に対して残留応力が及ぼす影響を正確に把握 することが求められる。

本研究では、断面内部に垂直補剛材を有する斜張橋タ ワーを3次元立体骨組構造にモデル化し、ファイバー要 素を用いて部材内部に残留応力分布を与え、弾塑性有限 変位動的応答解析法により解析を行う。既往の研究によ り、タワー部材にSM490Y(降伏応力:360MPa)を用いた 3 種類のタワー形状に対して、兵庫県南部地震で観測さ れた鷹取波を入力することでタワーの地震応答性状が確 認されている³⁾。そこで本研究では、様々なタワー部材 とタワー形状を用いたタワーモデルに対し、様々な地震 波を入力することで、残留応力が鋼製斜張橋タワーに及 ぼす影響を比較検討する。

2. 解析モデル

2.1 対象とした斜張橋タワー

北海道岩見沢市にあるたっぷ大橋の鋼製斜張橋タワー を基本モデルとする。タワー形状を図-1 に示す。基本 寸法は、塔の高さ68m、塔頂部の塔柱間隔13m、塔基部 の塔柱間隔18m とし、塔基部から高さ48mの位置に水 平梁が取り付けられており、鋼材には SM490Y が採用されている。

一方、タワー断面は内部に垂直補剛材を用いた中空長 方形断面であり、タワー高さ方向と水平梁には板厚と外 形断面が異なる変断面が採用されている。タワー断面は 図-2、各断面寸法の詳細は表-1に示す。

また鋼製タワーの片側には9本のケーブルが定着され

図-2 タワー断面

表-1 断面諸元(cm)

С	.S.	Outer dimension			Stiffener dimension				
D	im.	Α	В	t_I	<i>t</i> ₂	а	b	<i>t</i> ₁₁	<i>t</i> ₂₂
ts.	Ι	240	350	2.2	3.2	25	22	3.6	3.0
. pai	Π	240	350	2.2	3.2	22	20	3.2	2.8
Iewo	Ш	240	350	2.2	2.8	20	20	2.8	2.2
Tc	IV	270	350	2.2	2.6	31	22	3.5	2.4

ており、解析ではそれぞれを水平ばね要素にモデル化す る。補剛桁から斜張橋タワーに作用する慣性力は、補剛 桁が橋脚によって直接支持されていることから無視する。 図-3に示すように、基本モデルをH型モデルとして、 タワー高さ・塔基部間隔を変えずにタワー形状のみを変 更したA型モデル、門型モデルを作成する。なお、A型 モデルには、水平梁が設置されていないモデルを用いる。

またH型モデルの鋼材を変更したモデルを作成した。 それぞれの鋼材の降伏応力を表-2に示す。

2.2 残留応力のモデル化

次に残留応力のモデル化を行う。残留応力は、溶接の 収縮の結果として降伏点に近い値になるとされている。 また、残留応力の大きさと分布は、工場製作における溶 接加工過程の熱入力や冷却率と言った溶接パラメーター により左右される。図-4 に示すように、タワーモデル の中空長方形断面を有限数のファイバー要素により断面 にそって分割する。本研究では、図-5 のようなモデル を用いて仮定する⁴⁾。圧縮、もしくは引張の残留応力が、 有限数のファイバー要素に分割された1要素に分布され る。また、このモデルでは、断面全体で曲げモーメント、 軸力の自己釣合状態が満足されているものと仮定する。 さらに、圧縮残留応力の大きさは、普通鋼の場合、降伏 応力の半分以上、およそ75%まで増加するといわれてい る⁵⁾。残留応力が引張側における応力を降伏応力 σ_y 、圧 縮側における応力を σ_0 とそれぞれ仮定する。

ここで、引張応力と圧縮応力の関係を式(1)により表す。

$$\alpha = \sigma_0 / \sigma_y \tag{1}$$

ここでαを残留応力レベルとする。残留応力レベルはα =0.0から0.6までとし、αを0.1ごと増加させ、残留応 カレベルに応じた残留応力を先ほど仮定した残留応力分 布モデルに入力する。残留応力を考慮する場合の接線剛 性マトリックスは、図-6に示すように、材料の非線形 性とはり柱要素の応力-ひずみ関係からの初期応力状態 を考慮するため、鋼材の応力-ひずみ関係はトリリニア 型のモデルとする。

2.3 解析方法と入力地震波

本研究では、鋼材の降伏と幾何学的非線形性を考慮し た、はり柱要素の有限要素法と Newmark β法(β=0.25) および修正 Newton-Raphson 法を併用した解析方法を用 いる。接線剛性マトリックスは材料非線形とはり柱要素 の応カーひずみ関係を考慮している。基本鋼材は SM490Y を想定し、降伏応力を 360MPa、弾性係数を 200GPa とする。動的解析に用いた立体骨組モデルは 1 要素あたりの節点数は 2 のはり柱要素により構成され、 鋼製タワーの節点数は 2 のはり柱要素により構成され、 鋼製タワーの節点数は 47 の要素分割数は 46 とした。剛 性タワーの減衰には Rayliegh 減衰を採用し、減衰定数は 1 次固有振動モードの面内、面外に対してそれぞれ 2% と した。また、本研究では、入力地震波は図-7 に示す 3 つの地震波を用い、 3 成分加速度波形を用い、N-S波 は橋軸方向に、E-W波は橋軸直角方向に、U-D成分 は鉛直方向に入力する。

表-2 鋼材の降伏応力)(MPa)
-------------	--------

部材の種類	降伏応力
SM400	240
SM490Y	360
HT690	590

汊

図-4 断面のファイバー要素 図-5 残留応力分布

図-6 残留応力を考慮したトリリニアモデル

3. 動的応答性状

3.1 入力地震波とタワー形状による比較

(1) 塔基部圧縮側要素の時刻歴応答応力

塔基部において圧縮側残留応力が働いているファイバ ー要素の時刻歴応答垂直応力を図-8に示す。これより、 H 型と A 型は全ての地震波で残留応力を考慮しない α =0.0 の場合に降伏応力(360MPa)に達している。さらに、 残留応力を考慮すると1周期早い段階で降伏応力に達す る。ただし、鷹取波を入力した A 型においては 2 周期早 い段階で降伏応力に達していることがわかる。門型では $\alpha = 0.0$ の場合、鷹取波とSylmar 波では降伏応力に届かず 弾性領域内に留まる。しかし、残留応力を考慮するとい ずれも7秒付近で降伏応力に達しており、塑性化した後 も残留応力の影響を受け続けている。以上より、残留応 力は地震波やタワー形状の種類によらず、タワーの早期 塑性化と塑性化の助長を招く可能性があると考えられる。 また、塑性化後の残留応力の影響は塑性化前に比べて小 さいものではあるが、地震波とタワー形状の種類によっ ては塑性化後も長期的に残留応力の影響を受けることが 確認された。

(2) タワー全体の吸収エネルギー

タワー全体の各エネルギー応答を図-9に示す。なお、 ここでいうエネルギーとはタワーが吸収したエネルギー である。まず、形状から比較すると、H型は残留応力を 考慮した α=0.6 で各エネルギーが減少している。中でも Sylmar 波は、この減少率が大きく、残留応力の影響を最 も大きく受けていることがわかる。A 型においても α =0.6 で各エネルギーは減少しているが、Sylmar 波のひず みエネルギーは増加している。そのため、残留応力を考 慮した際の影響度の大きさとひずみエネルギーが増減す るかどうかは、地震波によって変化するということが確 認された。門型は鷹取波の入力エネルギーの増加が特徴 的である。これは残留応力を考慮しない場合、門型タワ ー基部の変形は弾性変形であるが、α=0.6で塑性変形す る。これによって生じるひずみエネルギーの大きな増加 が減衰エネルギーの減少を上回ったことが原因として考 えられる。地震波別に比較すると、Rinaldi 波は各エネル ギーにおいて残留応力による変化が少なく、残留応力に よる影響が最も少ない地震波といえる。一方、Sylmar 波 はひずみエネルギーの増加と減衰エネルギーの大幅な減 少が特徴的であり、最も残留応力の影響を受けている。

3.2 タワー鋼材による比較

(1) タワー基部の減衰エネルギー

タワー鋼材による比較では、入力地震波に鷹取波を採 用しており、H型タワーの鋼材を変更している。塔基部 の減衰エネルギー応答を図-10に、各残留応力レベルの 最大エネルギー応答を表-3に、残留応力を考慮しない α =0.0と比較した際の各残留応力レベルでの最大エネル ギー変化率を図-11に示す。降伏応力の最も低い SM400 は最大エネルギー変化率において最も低い値を示してい る。また、 α =0.0での減衰エネルギーが最も大きいモデ ルは SM490Y であるが、最大エネルギー変化率が最も大 きいモデルは HT690 のモデルである。そのため、減衰エ ネルギーの大きさには関わらず、降伏応力の高い鋼材ほ

図-8 塔基部の時刻歴応答垂直応力

図-10 塔基部の時刻歴減衰エネルギー曲線

表-3 最大エネルギー(MJ)

図-11 最大エネルギー変化率

ど残留応力の影響を大きく受けることが確認された。これは、降伏応力の低い鋼材ほど早期塑性化し、塑性化後の残留応力の影響が小さくなること、および降伏応力の大きい鋼材は、等しい残留応力レベルにおいて、残留応力の絶対値が大きくなることが原因として考えられる。また、HT690の α =0.3 での最大エネルギー変化率は他のモデルに比べはるかに大きい47.1%を示しているが、 α =0.3 から α =0.6 への推移傾向はSM490Yと似ている。そのため、降伏応力の大きい鋼材は α =0.3 までに、残留応力の影響を大きく受けることが確認された。

(2) 塔基部の曲げモーメントー曲率関係

塔基部の内面方向における曲げモーメントー曲率関係 を図-12 に示す。降伏応力の最も大きい HT690 のモデ ルでは、残留応力の増加につれて履歴ループが小さくな ることが確認される。ただし、他のモデルでは残留応力 による影響があまり見られない。タワー鋼材の降伏応力 がある値以上になると残留応力の増加に伴い塔基部の履 歴ループに大きく影響を及ぼすと考えられる。また、 HT690 の履歴ループが小さくなる原因として、残留応力 を増加させることで早期塑性化していることが考えられ る。

あとがき

本研究は鋼製斜張橋タワーを対象とし、ファイバー要 素で部材内部に残留応力を与え、非線形動的応答解析を 行い、地震波とタワー形状の変化、および鋼材を変化さ せ、残留応力の与える影響についてタワーの動的応答性 状から比較検討した。

地震波とタワー形状を変化させた比較については、全 てのモデルにおいて、α=0.3以上でタワーの早期塑性化 と塑性化の助長を招くことが確認された。鷹取波を入力 した門型モデルなど、地震波とタワー形状の種類によっ

図-12 曲げモーメントー曲率関係

ては長期的に残留応力の影響を受けることが確認された。 また、鷹取波と Sylmar 波を入力した門型モデルでは、残 留応力を考慮することで降伏に至り、ひずみエネルギー を増加させることが確認され、部材の損傷が大きくなる と思われる。

H型タワーの鋼材を変化させた比較については、降伏 応力の大きい鋼材ほど残留応力の影響により減衰エネル ギーが大きく減少することが確認された。そのため、タ ワー基部において、ひずみエネルギーが地震波エネルギ ーを吸収する割合が増え、結果的にタワー基部の負担が 大きくなることが予想される。また、降伏応力の最も大 きい HT690 モデルではα=0.3 で最大エネルギー変化率 が-47.1%の大きな値を示した。現在の設計基準⁶⁰ではα =0.3 以下の場合、残留応力の影響を小さいものとしてい る。そのため、降伏応力の高い部材を採用する場合には 残留応力の性状を把握し、対策を施す必要性があると思 われる。

参考文献

- 1) 林川俊郎:橋梁工学、朝倉書店、2000.
- 2)伊藤学:改訂鋼構造学、コロナ社、1999.
- 3)川上隆司:鋼製斜張橋タワーの地震応答とその低減 対策に関する研究、修士論文、2004.
- 4) Usami, T.and Ge, H.B.: Cyclicbehavior of thin-walled steel structures-numerical analysis, *Thin-WalledStructures*, Vol.32, pp.41-80, 1998.
- 5) Grodin,G.Y.,Elwi,A.E. and Cheng,J.J.R.:Buckling of stiffened plates-a parametic study, Journal of *Constructional Steel Research*, Vol.50, pp.151-175, 1999.
- 6) 土木学会:座屈設計ガイドライン、1987.