橋梁の地震動被害に関する地震動特性と構造特性との関連性

RELEVANCE OF EARTHQUAKE GROUND MOTION AND STURUCUTRAL CHARACTERISTICS TO ROAD BRIDGE DAMAGE OF EARTHQUAKE MOTION

寒地土木研究所	OE	員	佐藤 京	(Takashi Satoh)
寒地土木研究所	正	員	西 弘明	(Hiroaki Nishi)

1. はじめに

被害地震が発生するたびに、同程度の最大加速度の地 震動であっても、構造物の被害には大きな違いがみられ ることが再確認される.

地震動強さの指標として、広く用いられているものが 最大加速度である.しかし、最大加速度は被害との関連 性から考えると、地震動強さの指標として最適であるか 否かは明白ではない.最大速度、加速度応答スペクトル、 地動卓越周期などの指標が被害との関連性が高いとの考 察があるが、統一的な見解はだされていない.そのため、 構造物の被害に対して、もっとも支配的である地震動特 性を検討することは、今後の構造物の耐震設計精度を向 上させる上でも必要であると考える.

さらに,規模の大きな地震が発生した場合の被害予測, 二次災害防止のための迅速な復旧対応など,地震防災技 術の向上という観点からも必要不可欠な検討である.

そのため本研究では、被害を受けた橋梁と同地域で被 害を受けなかった橋梁の地震時挙動について、特に構造 物固有周期に着目して、地動記録と構造物応答記録を基 に考察を行った.

2. 検討対象の地震概要と構造物特性

検討対象とした地震は,規模 Mj8.0, 平成 15 年 (2003年) +勝沖地震とした. この震源は 1952年の地 震とほぼ同じ,北海道襟裳岬東南東沖 80km の北緯 41 度 46.7分,東経 144 度 4.7分,深さ 45km である. 1995 年兵庫県南部地震以降であり,観測体制が整えられてい たため,多くの地盤地震動が記録されている.

着目した構造物は, 震央から約 80km~150km に位置 する 6 橋梁である. 表-1 には観測された地盤地震動の 最大値や被害を受けた方向や箇所を示す. 図-1 には震 央との位置関係が分かるように対象構造物の位置を示す. なお, 参考までに観測記録を用いた最大加速度の空間分 布を合わせて示した.

表-1	対象橋梁	で観測さ	れた地盤地	也震動と	損傷の	有無
<u> </u>					12 2 1221	1 3 7 1 1 1

	震央距離	最大加速度	最大速度	損傷箇所
	(km)	(地表, gal)	(地表, kine)	
広尾橋	83.88	116.53	8.98	無
		(972.73)	(66.56)	
十勝河口橋	109.10	354.34	77.66	支承(直角)
大樹橋*	103.51	416.97	67.0	無
千代田大橋*	138.78	636.16	54.53	P8,P13(直角)
十勝大橋	147.35	207.97	90.62	無
士狩大橋	152.48	246.97	90.62	橋壁,橋翌等
戊	尾橋の最大加	速度 速度のいい	+ 近催 K_NET 紺	測占に上る比較値

毛橋の最大加速度,速度の()は,近傍 K-NET 観測点による比較値 ※近傍の K-NET 観測点からの推定値

図-1 観測記録を用いた最大加速度空間分布と橋梁位置

図-1 から分かるように対象とした橋梁のほとんどは、 大きな加速度が観測された地域に位置している. 表-2 には、対象橋梁の概要と適用基準を整理した. 適用基準 が不明のもがあるが、設計資料等より設計水平震度を整 理すると、広尾橋の橋軸直角方向 0.16 と十勝大橋を除 き、いずれも、設計震度は 0.2 またはそれに相当するも のであった. これらより、検討対象とした橋梁は、弾性 範囲内における設計上の耐震レベルは、同程度のものが 多いといえる. ただし、士狩大橋は地震時保有水平耐力 を1G相当で実施している.

なお,個別検討を行っている十勝大橋は,平成2年道路橋示方書に示されている地震時保有水平耐力の照査に 用いる地震動強さを参考に0.85Gを想定して,時刻断塑 性応答解析による主塔部耐力と部材変形性能を照査している.

表-2 対象橋梁の概要

	橋長	形式	適用基準(竣工年)
広尾橋	75m	4 径間単純 RCT 桁	S31 建示
十勝河口橋	928m	3@有ヒンジ PC ラーメン+3@連	S55 示方書
		続 PCBox3 連	
大樹橋	265m	2@連続 PCBox+5@PCT 桁	(\$42)
千代田大橋	706m	5@PCT 桁+5@ワーレントラス	S14 示方書案(トラス部),
		+5@PCT 桁	S31 示方書(PCT 桁部)
十勝大橋	501m	3@連続 PC 斜長橋	個別対応
士狩大橋	610m	5@連続大偏心外ケーブル	H2 示方書
		PCBox	

表-3 には、固有値解析による低次モードでの固有周期 を整理した.これらの整理にあたっては、北海道開発局 より資料提供いただいたものを用いている.なお、橋軸 方向、橋軸直角方向の区別がないものは、振動系が複雑 で橋梁全体での固有値解析による結果である.

表-3	対象橋梁の	固有周期と	:架橋地点	の地盤種別
-----	-------	-------	-------	-------

	地盤	橋軸方向		橋軸直角方向	
	種別	次数	固有周期	次数	固有周期
広尾橋	I種	1	0.478(2.090)	1	0.240(4.164)
		2	0.067(14.859)	2	0.061(16.390)
十勝河口橋	III種	2	0.507(1.97355)		
		5	0.410(2.44027)		
大樹橋	I種	1	0.407(2.459)	1	0.162(6.177)
		2	0.055(18.345)	2	0.037(27.421)
千代田大橋 P8	Ⅱ種	1	0.357(2.804)	1	0.285(3.513)
		2	0.067(14.913)	2	0.072(13.964)
千代田大橋 P13		1	0.356(2.806)	1	0.288(3.475)
		2	0.055(18.270)	2	0.050(19.856)
十勝大橋	Ⅱ種	1	3.631(0.2754)		
		2	1.661(0.6022)		
士狩大橋	II 種	1	1.904(0.5253)		
		3	0.227(4.4111)		

();固有周波数(Hz)

3. 地震動特性と橋梁固有周期による被害指標の検討

3.1 検討方法

対象とした橋梁近傍地盤には,強震計が設置されてお り,橋梁構造物に伝達される入力地震動が観測されてい る.この記録より各橋梁別に加速度応答スペクトルを算 出し,固有周期を鉛直直線で図示し,一質点系振動の応 答加速度を読み取れるように整理する.その値と設計レ ベルとの比較を行い,構造物応答が一質点系応答スペク トルより概略推定出来るか確認をすることで,地震被害 との関係について考察する.

次に、広尾橋と士狩大橋に着目し、構造物上で記録さ れた応答振動を地盤との相対振動に換算するとともに、 その相対振動に対して固有周期の振動をバンドパスフィ ルターを用いて抽出する.その抽出した波形の振幅と固 有周期に対する応答スペクトル値との比較を行い、構造 物の地震時最大応答の発生について考察する.

図-2~図-5 は、縦軸が加速度または速度応答値、横軸は周期(s)である.応答スペクトルは、2%、5%、10%、20%の減衰定数により算定したものを図化している.各図におけるグラフ表示は、上段が無被害橋梁、下段が被害橋梁でグループ化し、そのグループ内で震央距離が遠い位置にある橋梁順で左から並べてある.

なお,取り扱った地震記録は,比較対象とする橋梁の 橋軸および橋軸直角方向による挙動である.

3.2 加速度応答スペクトル

算出した応答スペクトルの形状は、一つのピークを示 すタイプと二つのピークを示すもの、そして、台形的に 広い周期で同程度の応答を示すタイプの3タイプに分け ることが出来る.架橋地点の地盤種別は、I 種地盤;広 尾橋、大樹橋、II 種地盤;十勝大橋、士狩大橋、千代 田大橋、III 種地盤;十勝河口橋となっており、地盤種 別との相関性は明確ではない.

図-2 は橋軸方向,図-3 は橋軸直角方向での算定結果 である. 震央に最も近い広尾橋では、橋梁近傍に設置されてい る地震計の振幅が非常に小さかっため、広尾町に設置さ れている K-NET の観測記録を併記した.この地点の振動 特性は、震央から近く震源特性の影響と想定するが、一 つのピークを明瞭に示しているタイプである.

図-2 と図-3 の結果より,各橋梁の固有周期に対する 応答値を表-4 の一覧に示す.また,比較をするため設 計レベルを併記した.

この結果で、十勝大橋を除く橋梁においては、設計レ ベルを大きく上回る加速度応答が算出されており、これ を基に被害予測を検討した場合には、どの橋梁において も何らかの被害が想定される.しかし、広尾橋、大樹橋 では、損傷は確認されておらず、さらに橋脚の損傷につ いては、千代田大橋のみであることから、加速度応答ス ペクトルを被害予測の指標とするには、何らかの条件設 定等が必要になるものと想定する.

表−4 加速度応答スペク	トルによる値と設計値比較
--------------	--------------

	設計レベル		固有周期(低時モード)による		
			応答スペクトルによる値		
	LG	TR	LG	TR	
広尾橋	196	157	100-300	200-450	
大樹橋	196	196	350-1200	500-1000	
十勝大橋	-	-	150-400	150-350	
十勝河口橋	196	196	300-500	450-1000	
士狩大橋	196	196	150 - 350	100-300	
千代田大橋*	196	196	500-2000	550-900	

3.3 速度応答スペクトル

図-4 は橋軸方向,図-5 は橋軸直角方向の速度応答ス ペクトルを各橋梁の固有値を併記して整理している.速 度応答スペクトルは,加速度応答スペクトルと異なり, 広尾橋を除く橋梁においては,長周期になるに従い速度 応答が大きくなる同一形状のスペクトルを示している.

構造物の固有周期による応答速度値において,無被害 橋梁と被害橋梁に特異点は確認できない.

図-5 橋軸直角速度応答スペクトル

表-5 橋梁別の速度応答スペクトルー覧

	固有周期(低時モード)による			
	応答スペクトルによる値			
	LG	TR		
広尾橋	10-25	5-20		
大樹橋	20-50	20-80		
十勝大橋	35-120	35-90		
十勝河口橋	10-50	20-80		
士狩大橋	55-190	30-100		
千代田大橋*	25-90	25-55		

橋梁別で算出された速度応答値を表-5 に一覧として 整理する.被害橋梁で算出された応答値は、比較的大き な値となっている橋梁があるものの、無被害橋梁の応答 値も減衰が小さい場合には、大きな値となる結果が算出 されている.

3.3 実応答記録と固有周期振動について

被害を受けなかった広尾橋と被害を受けた士狩大橋の 橋脚上の応答記録に着目して,応答スペクトルによる被 害指標の可能性について考察する.

図-6,図-7 に示している記録は、地表加速度と地表 地盤からみた橋脚天端部の相対加速度および各橋梁の卓 越振動1次モードの固有周期近傍で橋脚上の相対加速度 にバンドパスフィルターを適用した応答挙動を併記した.

なお図-6,図-7の縦軸は、地盤相対加速度は左軸、 その他は右軸にて描画している.

図-6 に示した広尾橋の橋軸方向および直角方向の応 答加速度波形は,地盤振動から3倍程度の振幅増加が確 認でき,橋脚が大きく応答したものと推定する.しかし, 卓越するであろう固有振動1次モードの周期のみを抽出 すると,若干の応答が確認できるものの橋脚の最大振幅 時以降においても大きな増幅が確認できず,図-2および図-3に示した広尾橋の加速度応答スペクトル値とは, その振幅差が大きい.

図-7 に示している士狩大橋の応答波形では、衝撃的 振動が 55 秒以降に確認できる.本橋梁は、桁が橋壁等 に衝突し損傷している.この現象が観測記録に収録され たとも考えられるがそれ以外の時間では、地盤振動と同 定の加速度応答が確認出来る.また、士狩大橋で固有振 動の最も卓越するであろう振動モードは、桁の水平挙動 が卓越する遊動円木振動である.図-7 に示している卓 越振動モードでの波形は、遊動円木振動が励起する周期 で抽出している.橋脚の相対加速度波形が衝撃的振動を 受ける時刻とほぼ同時刻で、最大振幅となっておいるが、 図-2 に示した士狩大橋の加速度応答スペクトル値では、 150gal~350gal となっており、抽出波形の振幅とは 7 倍程度の差が生じていることが分かる.

図-6 広尾橋の応答波形と近傍地表面加速度 (上段;橋軸方向,下段;橋軸直角方向)

(橋軸方向)

4. まとめ

本報告では、非常に限定的データの中での検討であっ たため明確な結論は出せないものの、1質点系モデルに よる応答スペクトルと固有周期との関連から地震被害予 測の指標を整理するためには、応答スペクトルと橋脚の 実挙動との乖離を明確にすることが必要であると考える.

今後も実挙動を対象とした同様の検討を進めるととも に,解析的検討を実施する予定である.

謝辞

本報告では,北海道開発局 WISE と防災科学技術研究所 K-NET の観測記録を使用させていただきました.また, 北海道開発局より橋梁に関する資料提供いただいた.こ こに記して,謝意を示す.