地震被害を受けた橋梁の強震記録を用いた被害分析

Damage analysis using earthquake strong record of the bridge which suffered earthquake damage

大日本コンサルタント(株)	OE	員	佐々木	、達生	(Tatsuo	Sasaki)
大日本コンサルタント(株)			岡本	晃	(Akira	Okamoto)
(独)土木研究所寒地土木研究所	正	員	澤松	俊寿	(Toshikaz	zu Sawamatsu)
(独)土木研究所寒地土木研究所	正	員	三田村	† 浩	(Hiroshi	Mitamura)
大日本コンサルタント (株)			小橋	朋和	(Tomoka	zu Kobashi)

1. はじめに

1995年の兵庫県南部地震を皮切りに,我が国の道路 橋の耐震設計は耐震性能の明確化を図り,レベル2クラ スの大規模地震が発生しても橋梁の機能が損なわれない ことを目標とした耐震設計が行われてきている.一方で, 2004年の中越地震や2008年の岩手宮城内陸地震など, 近年の大規模な地震の被害として,鋼桁における対傾構 や下横構など,耐震設計がなされていない非耐震部材に 座屈や破断等の損傷が確認されている.この損傷自体は, 被災後の橋梁の供用性には影響が無い部材ではあるが, 震災のたびに同じ個所に損傷が生じており,被災経験を 活かした非耐震部材の改善が課題である.

また,耐震部材ではない部材は,設計時点では具体的 な損傷部位や損傷順のイメージ化がなされていないのが 現状である.理想的には,損傷箇所を明確にし,損傷程 度に応じた交通供用の判断指標を策定するのが望ましく, 更には,弱点部の補強による次なる損傷個所の想定が重 要と考えられ,このことが,震災等の災害発生時の迅速 な交通供用の可否判断に繋がるものと考えられる.

本稿では、東日本大震災にて中間支点上の対傾構に損 傷が生じた連続鋼 I 桁を例にとり、強震記録に基づいて、 モード解析の結果による補強前と補強後との作用力の変 化に着目した考察を述べる.

2. 広瀬大橋の概要と被災状況

対象橋梁は,仙台南部道路において,広瀬川と名取川 との合流部から約 600m 上流の広瀬川を渡河する橋長 370.6mの鋼橋で,平成3年(1991年)竣工である(図-1). 上部構造は4径間連続非合成鋼I桁の2連で構成され, 下部構造は,両端が逆T式橋台,橋脚は張出式小判断 面の橋脚である.基礎構造は,A1橋台からP2橋脚, A2橋台が場所打ち杭 41200,P3橋脚からP7橋脚まで の5基がニューマチックケーソン基礎として,地表面下 9~12m 以深の洪積砂礫層を支持層としている.支持層 より上位の地層構成は,沖積砂質土および沖積粘性土層 が堆積しており,地盤種別はII種と判定される.なお, 対象橋梁は,平成17年(2005年)に耐震補強工事が実施 されており,耐震性能2を満足する仕様となっている. すなわち,橋脚柱へのRC巻立てに加え,変位制限構造 と落橋防止構造が完備された状態である.

2011 年 3 月 11 日に発生した東北地方太平洋沖地震に よる広瀬大橋の損傷状況は、別途損傷報告にもあるよう に、RC 巻立て補強が施されている橋脚に損傷は認めら れず、各支承部の変位制限構造の台座コンクリートに断 面欠損、ひび割れが生じているが、耐震性を考慮する部 材には交通に支障をきたすような損傷は生じていない. 一方で、中間支点部において、耐震性を考慮しない部

図-1 全体一般図

図-2 起点側連の中間支点上対傾構の損傷

図-3 終点側連の中間支点上対傾構の損傷

						N-S		E-W		最	最大加速度			
K-NET(仙台 MYG013)				15	517gal		982gal			1808gal				
国交省地震計ネットワーク(仙台河川国道事務所)			7	35gal		717gal			861gal					
国交省地震計ネットワーク(東北技術事務所)			5	547gal 614gal			661gal							
	MYG013仙台 仙台河			川国道事務所			東北技術事務所							
	2000	▲ 最大値: 最小値:	E 991.780 (8 -607.859 (9	W (9.55s) (0.75s)	1000 0 (cm%2) - 200 - 200 - 200 - 200 - 200 - 200 - -	Mandad and June	基 大值: 最小值:	E 717.126 (8 -577.860 (8	W 35.26s) 34.67s)	加速度 000- 0001 0001 0001 0001 0001 0001 000	-	▲ 	EV 614.437 (8 -611.430 (3	W 3.59s) 3.33s)
(戦	0 50	_100 時間(sec)	150	200	-1000 0	50	 時間(sec)	150	200	-1000	0 50	_100 時間(sec)	150	200
洋沖地震(本:	2000 創業型 -1000	最大值:	N 1522.488 (8	S 19.55s)	加速度 0 0 00000 -200		▲ ● 小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小	N 735.190 (8	(S 33.99s)	加速度 0000000 -20000000000000000000000000000		- 	N: 547.414 (3	S 3.21s)
大平	-2000 - 50	最小值:	-1000.824 (4	7.61s) 200	-1000	50	最小值: 100	-554.680 (8	200	-1000	0 50	最小值: 100	-429.899 (8	6.65s) 200
東北地方	2000 型型000 年 5000 - -	時間(sec)	U	D	加速度 (cm/s2) 0 0001 		時間(sec)	U	D	加速度 (cm/s2)1 0 0001		時間(sec)	U	200
	-1000 -2000 -100	最大值: 最小值:	322.110 (4 -244.362 (9	6.33s) 1.09s)	-500 -1000		▲ 最大値: 最小値:	226.612 (8 -202.647 (8	33.51s) 36.43s)	-500 -1000		最大值: 最小值:	362.753 (8 -454.066 (8	4.48s) 8.15s)
	0 50	100 時間(sec)	150	200	0	50	100 時間(sec)	150	200		0 50	_100 時間(sec)	150	200

主_1 対象権初近協の強電記録

図-4 対象橋梁近傍の強震記録による加速度波形

材である対傾構に損傷が生じている. 各主桁間の対傾構 斜材すべてに損傷が生じており、起点側の連では斜材中 間部にて座屈するように(図-2),終点側の連では対傾構 斜材とガセットの接続部で破断が生じている(図-3).

なお,対象橋梁の橋軸方向は E-W 方向である.

3. 強震記録の整理

対象橋梁近傍の強震記録を表-1,図-4に,各観測点 と対象橋梁の位置関係を図-5に示す.3つの観測所のう ち、対象橋梁に最も近い観測点は国土交通省地震計ネッ トワーク(仙台河川国道事務所:以下,仙台河国と記す) であり、対象橋梁から北西へ約 1km である. 対象橋梁 での地盤種別はⅡ種地盤であり,観測点までの距離が非 常に近いため、概ね近似する地盤条件と考えられる.

従って、仙台河国の強震記録に基づき考察する.

仙台河国で観測された本震の加速度オービッドを図-6 に示す. 参考のため K-NET 観測点(仙台 MYG013:以 下, MYG013 と記す)の加速度オービッドを併記した.

MYG013 では明確に N-S 方向成分が卓越しているが, 仙台河国では加速度の卓越方向は明確ではない. 次に仙

台河国の加速度波形について、5%減衰とした場合の加速度応答スペクトルを図-7 に示す.現行の道路橋耐震 基準¹⁾に示される標準加速度応答スペクトルを併記する が、E-W 方向、N-S 方向、共に0.5 秒以下の短周期領域 にレベル2タイプII相当の、0.5 秒を超え0.8 秒以下で はレベル2タイプIを超える加速度応答が見られ、概ね、 両方向ともに近似した最大加速度、加速度応答スペクト ル曲線となるため、E-W 方向、N-S 方向、共に同規模の 作用があったものと考えらえる.

4. 対象橋梁の固有値からの損傷分析

次に、補強前と補強後の固有値の変化に着目し、固有 値解析を行った.モデルは平面骨組みとし、基礎は S-R バネモデルとしている.橋脚柱の剛性は降伏剛性を用い た.加速度応答スペクトルに重ねてプロットしたものを 図-8 に示す.

併せて、今後のシミュレーションに活用するため、同 モデルによる時刻歴応答解析を、損傷が生じた方向(橋 軸直角方向)のみ実施し、中間支点上に発生する最大応 答水平力を抽出した.使用した地震波は、仙台河国の N-S 波である.

	橋軸方向								
モード	補強	前	補強後						
次数	固有振動数	固有周期	固有振動数	固有周期					
	(Hz)	(S)	(Hz)	(S)					
1次	0.834	1.199	0.972	1.028					
2次	0.930	1.075	1.010	0.990					
3次	1.687	0.593	1.688	0.592					
4次	1.754	0.570	1.755	0.570					
5次	1.901	0.526	2.000	0.500					
6次	2.006	0.498	2.077	0.482					
7次	2.049	0.488	2.608	0.383					
8次	2.080	0.481	2.644	0.378					
9次	2.147	0.466	2.722	0.367					
10次	2.183	0.458	2.758	0.363					
11次	2.627	0.381	2.923	0.342					
12次	2.718	0.368	2.950	0.339					
13次	3.322	0.301	3.324	0.301					
14次	3.360	0.298	3.361	0.298					
15次	3.520	0.284	4.102	0.244					

4.1 橋軸方向の固有値

耐震補強実施前と耐震補強実施済みとした場合の,対象橋梁の橋軸方向固有値解析結果を表-2 に示す.表-2 の主要モードを太字としており,橋軸方向の主要な固有 周期は,1 連目・2 連目の固定橋脚と上部構造の水平変 位モードで 1.0 秒弱,可動橋脚の単振動モードで 0.3~ 0.4 秒程度である.

固定橋脚では、レベル2タイプIを下回る応答であっ たと想定され、設計の想定を上回る入力は無かったもの と考えらえる.一方、可動橋脚では、補強前よりも補強 後の方が応答が大きくなるが、上部構造慣性力が可動支 承で遮断されたことに加え、耐震補強の効果もあったと 考えらえる.

4.2 橋軸直角方向の固有値

同様に橋軸直角方向の補強前・補強後の固有値解析結 果を**表-3**に主要モード図を図-9に示す.

橋軸直角方向の主要な固有周期は0.5秒程度である.

橋軸直角方向(N-S 方向)への入力はレベル 2 タイプⅡ 相当の入力があったものと考えられる.橋軸方向と同様 に、耐震補強を実施した効果により、橋脚柱や支承本体

平成23年度 土木学会北海道支部 論文報告集 第68号

表-3 橋軸直角方向の固有値

	橋軸直角方向								
モード	補強	前	補強後						
次数	固有振動数	固有周期	固有振動数	固有周期					
	(Hz)	(S)	(Hz)	(S)					
1次	1.629	0.614	1.868	0.535					
2次	1.677	0.596	1.913	0.523					
3次	1.861	0.537	2.055	0.487					
4次	2.364	0.423	2.505	0.399					
5次	2.578	0.388	2.703	0.370					

表-4 補強前と補強後の分担率の変化(直角方向)

下部工No.			分担里重(kN)							
		補強前		補強後						
		橋軸直角方向	分担率	橋軸直角方向	分担率					
A1‡	喬台	2446.8	11%	2562.6	12%					
P1橋脚		5843.8	27%	5705.7	26%					
P2橋脚		5337.7	24%	5033.1	23%					
P3橋脚		5805.7	27%	6368.2	29%					
P4橋脚	起点側	2424.4	11%	2188.7	10%					
合	計	21858.4	100%	21858.3	100%					
P4橋脚	終点側	1482.7	6%	1866.7	8%					
P5橋脚		9108.4	38%	8112.4	34%					
P6橋脚		4888.4	20%	5545	23%					
P7橋脚		5273.2	22%	5416	22%					
A2橋台		3452.1	14%	3264.9	13%					
合	丰	24204.8	100%	24205	100%					

には損傷が生じなかったが、レベル2タイプⅡ地震動を 上回る加速度応答により、耐震性を考慮しない耐力向上 がなされていない対傾構に損傷が移行し、その中でも比 較的固定点間距離が長く、断面が小さい斜材に損傷が発 生したものと考えられる.

4.3 補強前と補強後の分担重量の差異

表-4 に補強前と補強後の分担率の変化を,表-5 に補 強前と補強後の中間支点上の地震時水平反力と,支承耐 力を示す.表-4 より,補強前と後とで明確な分担率の 変化は無い.従って,橋脚柱を RC 巻立てにより補強し たことで剛性が変化し,全体的に短周期側となったこと が,表-5 のように応答が増加した要因と考えらえる. また,補強前は,当初より剛性が高い橋軸方向固定の P1・P5 橋脚に慣性力が集中する傾向であったが,補強 後は剛性差が小さくなり,全体的に慣性力が分散され, 可動橋脚にも,比較的大きな応答が生じたと考えられる. このことは,中間支点上の全ての対傾構に損傷が生じた 傾向と一致する.

次に,表-5の補強前・後の支点反力はいずれも支承 耐力を上回る結果である.支承本体に損傷が生じなかっ たことは,変位制限構造と補完し合ってレベル2地震動 に耐えるという性能を満足するものであり,耐震補強効 果があったものと考えられる.一方で,落橋に至るよう な重大な損傷ではないものの,設計で想定していない箇 所に損傷が生じており,耐震設計時,または耐震補強設 計時における補強対象部材の周辺部材へ配慮が必要と考 えられる.ただし,周辺部材の剛性や耐力の向上が,次 なる周辺部材や主桁への損傷誘導となる恐れがある.

従って、今後、調査研究を進めるべき課題として、数

図-9 橋軸直角方向主要モード図(補強後)

下部工No.			支承	支点反力(kN)						
		内桁		外桁		∧ ⇒1	応答値			
		個数	耐力	個数	耐力	台計	補強前	補強後		
A1橋台		2	308	2	376	1367	3761	3957		
P1橋脚		2	1338	2	1338	5351	7181	7582		
P2橋脚		2	615	2	751	2733	4032	6379		
P3桥	P3橋脚		751	2	901	3306	3700	6788		
P4橋脚	起点側	2	308	2	376	1367	2731	2760		
	終点側	2	308	2	376	1367	2702	3348		
P5橋脚		2	1622	2	1622	6486	7484	9521		
P6橋脚		2	615	2	751	2733	3138	5894		
P7橋脚		2	751	2	901	3306	3614	5491		
A2橋台		2	308	2	376	1367	2500	2701		

表-5 支承耐力と地震時反力

値解析を用いた損傷シミュレーションにより,損傷の再 現と,対傾構が損傷しないための断面を確保した場合で の他部材への影響把握を実施する予定である.

5. まとめ

東北地方太平洋沖地震により損傷が生じた道路橋を対 象に,強震記録と固有値解析結果に基づき,損傷分析を 行った.以下に本稿のまとめを示す.

- (1) 加速度応答スペクトル,並びに固有値解析の結果より,橋軸方向,橋軸直角方向,ともに比較的大きな応答が発生した.
- (2) 耐震補強により、橋軸方向に可動の橋脚も、橋軸直 角方向の地震応答の増加が確認された.静的解析結 果によれば、補強前と補強後では、上部構造分担重 量の差が微小であるため、地震応答が増加した理由 は、橋脚柱への耐震補強によるものである.
- (3) 中間支点上に生じる水平力は、支承耐力を超過しており、変位制限構造設置による効果が認められる. 一方で、耐震性を考慮しない部材に損傷が移行した.
- (4) 今後,時刻歴応答解析結果を用いて,中間支点上対 傾構の損傷状況を再現した上で,仮に対傾構斜材の 耐震強度を確保した場合の他部材(主桁ウェブや床版 等)への損傷移行挙動を追跡する.

謝辞

本報では,防災科学研究所 K-NET,並びに国土交通 省河川・道路等施設の地震計ネットワーク情報の観測波 を使用させて頂きました.

参考文献

 日本道路協会:道路橋示方書・同解説、V耐震設計 編,2001.