門型 RC 造骨組に関する自動車衝突時の詳細応答解析

Accurate numerical simulations of portal RC frame under automobile crashing

室蘭工業大学大学院	○ 学生員	武田	雅弘 (Masahiro Takeda)
室蘭工業大学大学院	フェロー	岸	徳光 (Norimitsu Kishi)
室蘭工業大学大学院	正 員	小室	雅人 (Masato Komuro)

1. はじめに

建築物は,主に死荷重である自重などの固定荷重,人 間や物品などの積載荷重及び地震荷重や風荷重等を考慮 して設計が行われている.しかしながら,発生確率はき わめて低いが,自動車,脱線列車,ヘリコプター等の衝突 や,ガスの屋内外爆発による偶発的な衝撃荷重の作用も 想定され,人命にかかわる大事故に至る場合も少なくな い.一方で,構造物の設計法は,仕様を規定する許容応力 度設計法等の設計法から,性能規定を基本とする設計法 への移行が世界の趨勢となっている.我が国においても, 国土交通省から同設計法への移行が要望されている¹⁾.

一方, 地震荷重の場合には入力波を対象構造物にかか わらず一義的に決定できるのに対して, 衝突問題の場合に は衝突体の速度や衝突体と被衝突体間の相互作用を考慮 して衝撃荷重を決定しなければならない. そのため, 構 造物の耐衝撃性能評価は, 基本的に動的応答解析を実施 して評価しなければならず, 単純な構造物に対しても容 易ではない.

このような観点より、本研究では、RC構造物に関す る合理的な耐衝撃設計法の確立に向け、門型RC造骨組 を対象に柱部に自動車が衝突した場合の耐衝撃性を把握 することを目的に、(1)自動車の有限要素モデルを骨組に 衝突させる場合、(2)自動車モデルを剛体壁に衝突(フル ラップ全面衝突、以後単にフルラップ衝突)させて得られ た衝撃力波形を入力する場合、(3)自動車と同一質量を有 する弾性円柱体を衝突させる場合について、衝突速度を 20~80 km/hr まで変化させた三次元弾塑性有限要素解析 による詳細解析を実施し、比較検討を行った.本研究で は、主に入力衝撃力波形、衝突部における柱の水平変位 波形、最大変位、残留変位、骨組のひび割れ分布性状につ いて比較検討を行うこととした.なお、本数値解析には 有限要素法に基づいた弾塑性衝撃応答解析用汎用コード LS-DYNA(Ver. 971)²⁾を用いている.

2. 数值解析概要

2.1 門型 RC 造骨組

図-1には、本数値解析で対象とした門型 RC 造骨組の 形状寸法および配筋状況を示している。本モデルは、標準 的な3階建事務所建築設計例³⁾の1階部分を取り出したも ので、柱頂部には上階からの自重、梁部には常時荷重を作 用させている。門型 RC 造骨組の柱中心間隔は5,500 mm, 柱長が2,950 mm,内空幅が4,900 mm である。柱、梁の断 面寸法はそれぞれ 600×600 mm,350×650 mm である。

各断面の配筋状況は,梁部は上下端主鉄筋にそれぞれ D19, D16,基礎梁部には上下端主鉄筋に D19 が配筋され

図-1 門型 RC 造骨組の形状寸法および配筋状況

表-1 物性値一覧

材料	密度	弹性係数	圧縮/降伏強度	ポアソン比
	ρ (ton/m ³)	E (GPa)	(MPa)	v
コンクリート	2.35	14	21	0.167
D10/D13	7.85	206	295	0.3
D16 / D19 / D22	7.85	206	345	0.3
柱頭定着鋼板	7.85	206	400	0.3

ており,両梁部とも帯筋には D10 が配筋されている.柱 部は主鉄筋に D22,帯筋には D13 が配筋されている.ま た,基礎スラブには短辺方向,長辺方向ともに D13 が配 筋されている.梁部主鉄筋および柱部主鉄筋の芯かぶり は,それぞれ 60 mm,50 mm としている.

骨組には,鉛直荷重として上層階からの荷重 420 kN を柱 頭部に,梁部には2階床部に作用する常時荷重 20.3 N/mm を梁上面に作用させている.

表-1には、本解析で用いた材料物性値の一覧を示している. コンクリートの圧縮強度およびポアソン比は、それぞれ 21 MPa, 1/6 と設定した. また、鉄筋の降伏応力は規格値を用いることとし、D10 および D13 の場合で 295 MPa, D16, D19, D22 の場合で 345 MPa としている.

2.2 門型骨組の有限要素モデルおよび解析条件

図-2(a)には、門型 RC 造骨組の要素分割状況を示している。本数値解析では、後述の自動車モデルが非対称構造であるためフルモデルとした。要素分割において、柱および梁の各軸方向の要素長は、コンクリートのひび割れの影響が適切に評価できるように、45~60 mm 程度としている。また、各部材は、鉄筋には2節点梁要素を、他の要素には8節点固体要素を用いてモデル化している。なお、鉄筋とコンクリートは完全付着とした。常時荷重を再

図-2 要素分割状況

現するために, 柱頭部には単位体積重量が 1,167 kN/m³ と なるシェル要素を, 梁上面には単位体積重量を 580 kN/m³ とする厚さ 100 mm の固体要素を配置している. 両要素と もに弾性係数を 0.1 GPa, ポアソン比を 0 とした.

各要素の積分点に関しては,固体要素には1点積分,梁 要素には精度を向上させるために2×2 Gauss 積分を用い ている.本門型 RC 造骨組モデルにおける総要素数および 総節点数は,それぞれ約260,000 および275,000 である.

境界条件は基礎スラブ底面は完全固定とし,衝突体-柱間には面と面との接触・剥離を伴うすべりを考慮した 接触面を定義している.

2.3 衝突体の有限要素モデル

本研究では,門型 RC 造骨組の耐衝撃性を検討するため,2 種類の衝突体を用いて数値解析を実施した.以下, それぞれの衝突体の概要について述べる.

本研究では,乗用車タイプの自動車を衝突させることとし、1つは NCAC (National Crash Analysis Center)⁴⁾で公開されている自動車モデルを採用することとした. 図-2(b)には,自動車の有限要素モデルを示している.本モデルは梁要素,シェル要素および8節点固体要素から構成されている.本モデルの総要素数および総節点数は,それぞれ約28,400 および26,800 である.また,自動車の総重量は1,350 kgと設定した.

他の1つは,自動車を簡易にモデル化する場合を想定 して,自動車と同一の質量を有する鋼製の弾性円柱体を 仮定した. 図-2(c)には,その有限要素モデルを示して いる.形状寸法は一義的に直径 600 mm,全長 2,050 mm で先端 50 mm の部分にテーパー(テーパー半径 r = 902.5mm)を施した.全質量 1,350 kg とし,全て 8 節点固体要 素でモデル化している.本モデルの総要素数および総節 点数は,それぞれ約 6,400 および約 7,400 である.

2.4 材料物性モデル

図-3(a)にはコンクリートに関する応力-ひずみ関係 を示している. 圧縮側に関しては,相当ひずみが 0.15% に達した時点でコンクリートが降伏するものと仮定し,完 全弾塑性体のバイリニア型にモデル化した.また,引張 側に関しては,引張強度に達した段階で,応力を完全に 解放するものとしている.なお,引張強度は RC 梁に関す る重錘落下衝撃応答解析時と同様に圧縮強度の 1/10 と仮 定した. 降伏の判定には Drucker-Prager の降伏条件式を採

用し、内部摩擦角を 30°としている.

図-3(b)には,鉄筋に関する応力-ひずみ関係を示している.材料構成則には,塑性硬化係数H'を弾性係数の1%とするバイリニア型の等方硬化則を適用した.なお,降伏の判定には von Mises の降伏条件式を採用している.

また,自動車モデルにおける材料物性モデルに関して は,NCAC⁴⁾にて公開されている有限要素モデルを直接使 用していることより,同モデルにあらかじめ組み込まれ ている物性モデルをそのまま用いることとした.

2.5 数値解析ケース

本数値解析では,衝撃荷重入力のRC造骨組の動的応答 特性への影響を検討するために,以下に示す3種類の入 力方法を設定し,数値解析を実施した.すなわち,

- 自動車モデルを直接 RC 造骨組に衝突させる場合(以後,自動車モデル);
- 自動車モデルをフルラップ衝突させ、得られた衝撃 力の時刻歴波形を荷重として RC 造骨組に作用させ る場合(以後、フルラップモデル);
- 3) 弾性円柱体モデルを直接 RC 造骨組に衝突させる場合(以後,弾性体モデル).

数値解析は、フルラップモデルを除いて、あらかじめ 決定された衝突速度 V を衝突体の各節点に与えることに よって実施している.なお、フルラップモデルの場合に は、高さ 250 mm,幅 600 mm の領域に等分布荷重となる ように衝撃力を作用させている.また、その作用中心位 置は柱の高さ方向の 1/2 点であり、衝撃荷重は水平方向に 与えることとした.

平成23年度 土木学会北海道支部 論文報告集 第68号

図-4 各応答波形

3. 数值解析結果

3.1 各種応答波形

図-4(a)には、各入力モデルにおける衝撃力の時刻歴 波形を比較して示している。なお、図中には、0~80 ms までの拡大図も示している. 自動車モデルの場合に着目 すると、いずれの衝突速度に関しても衝撃力は緩やかに励 起していることが分かる.これは、バンパーの緩衝効果 や柱材の局所的な変形による効果であるものと推察され る. また、自動車の衝突速度が速いほど最大衝撃力の発 生時刻も早くなる傾向にあることが分かる。弾性体モデ ルの場合には、いずれの場合においても衝突初期に非常 に大きな衝撃力が発生している. その後, 数波の振幅の 小さい高周波成分が励起し、緩やかに減少している。衝 突初期における大きな衝撃力の発生は、自動車モデルの ようなバンパーが設置されていないことによるものと判 断される.なお、フルラップモデルの場合には、載荷初 期に自動車モデルよりも大きな衝撃力が励起するものの, ある程度の時間経過後は自動車モデルの場合と類似の波 形性状を示していることが分かる.

図-4(b)には,各入力モデルの自動車衝突側柱の高さ 方向中央点における水平方向変位に関する時刻歴応答を 示している.図より弾性体モデルの場合が最も大きな値 を示していることが分かる.これは衝撃力波形の場合と 同様にバンパー等の緩衝材が設置されていないことによ る.一方,自動車モデルの場合には,変位の増加勾配が 小さくほぼ線形状に増加し,最大値に至る傾向を示して いる.なお,最大変位は,V=80km/hrの場合で弾性体モ デルの1/8 程度となっている.また,フルラップモデルの 場合には,自動車モデルと同様な波形性状を示している.

同一衝突速度による応答波形を比較すると、フルラッ プモデルの場合には、衝撃力は衝突初期に自動車モデル の値よりも大きいものの、その後は自動車モデルとほぼ 同様な性状を示すことや、変位の波形性状が類似してい ることが分かる.これは、自動車衝突による RC 骨組の応 答特性は、フルラップモデルを用いることにより十分な 精度で解析可能であることを示唆している.一方、弾性 体モデルの場合には、応答特性が他のモデルと著しく異 なり、かつ最大変位も8倍以上の過大評価となることよ り、設計的な観点からは適用不可能であることが分かる. 3.2 入力エネルギーと応答値の関係

図-5には、入力エネルギーと最大衝撃力、最大変位お よび残留変位の関係を示している。図より、いずれの場合 も弾性体モデルの場合が自動車モデルとフルラップモデ ルの場合よりも大きいことが分かる。また、最大衝撃力と

図-6 ひび割れ分布 (V = 80 km/hr)

(c) 弾性体モデル

最大変位に関しては3モデル共に入力エネルギーに比例 して大略線形の増加の傾向を示している. さらに, 自動 車モデルとフルラップモデルで類似した分布性状を示し ていることが分かる.一方,残留変位に関しては,各モ デルともある入力エネルギー以降で線形な増加の傾向を 示している。また、自動車モデルの場合がフルラップモ デルの場合より若干大きい値を示している。これは、フ ルラップモデルの場合には、高さ方向に 250 mm の範囲に 載荷しているのに対して,自動車モデルの場合には衝突 初期にはバンパー部が作用するものの時間の経過と共に 載荷面積が大きくなり,かつ損傷領域も広くなるためと 推察される.

3.3 ひび割れ分布性状

図-6には、各解析モデルにおける骨組正面のひび割 れ分布として、衝突速度 V = 80 km/hr の結果を比較して 示している. (a)図に示すトラックモデルと(b)図のフル ラップモデルのひび割れ分布を比較すると、衝撃荷重作 用域や梁材および非衝突柱材におけるひび割れ分布に若 干の差異が見られるものの、両者は比較的一致している ことが分かる。この差異は前述のように載荷面積の影響 によるものと推察される.一方, (c) 図に示す弾性体モデ ルの場合には、衝撃力作用域の損傷が大きく、せん断破 壊の傾向を示している. また, 梁材上面のかぶりコンク リートに剥離の傾向が見られる.以上より,弾性体モデ ルの場合には、自動車モデルやフルラップモデルよりも 損傷を過大に評価する傾向にあることが分かる.

4. まとめ

本研究では、門型 RC 造骨組を対象に柱高さの 1/2 点に 自動車が衝突した場合の耐衝撃性を把握することを目的 に、衝突体の衝突速度を 20~80 km/hr まで変化させ、有 限要素法による三次元弾塑性衝撃応答解析を実施した。本 論文で得られた結果を整理すると、以下のようになる.

- 1) 弾性体モデルを使用する場合には、自動車モデルや フルラップモデルを用いる場合と比較して、衝撃力 を過大に評価することが明らかになった.
- 2) フルラップモデルを使用する場合には、衝撃力波形お よび変位波形は自動車モデルを用いる場合と概ね一 致するものの,残留変位およびひび割れ分布性状は 自動車モデルよりも小さく評価される傾向にある.
- 3) その要因は、フルラップモデルの場合には載荷面積 が一定であるのに対して、自動車モデルの場合には 載荷面積が時間の経過と共に広くなる傾向を示すた めと推察される.

参考文献

- 1) 国土交通省:土木・建築にかかる設計の基本につい て, 2002.10.
- 2) Hallquist, J. O., LS-DYNA Version 971 User's Manual, Livermore Software Technology Corporation, 2007.
- 3) 日本建築学会:鉄筋コンクリート構造計算基準・同解 説, 付3·構造設計例, 1991
- 4) National Crash Analysis Center