内部に弾性体を有する球殻における非軸対称座屈変形の解析

analysis of non-axisymmetric buckling modes

in complete spherical shells with internal elastic body

北海道大学大学院工学院	○学生員	水口翼 (Tsubasa Mizuguch	i)
北海道大学工学部	学生員	小西善晃 (Yoshiteru Konish	ni)
北海道大学大学院工学院	学生員	関澤貴史 (Takahumi Sekiza	awa)
北海道大学大学院工学院	正 員	佐藤太裕 (Motohiro Sato)	

1. はじめに

本研究で取り扱うシェルはその優れた構造特性から, 工業製品、建築物などの人工物はもちろんのこと、野菜 や果物など自然界においても非常に多く存在している汎 用性の高い構造形式であるといえる. これらの構造にか かる荷重が臨界点(座屈荷重)に達すると構造の状態は座 屈後平衡状態へと移行するが、内部または外部に弾性体 を有するなど特殊な抵抗力が働く構造を持つシェルにつ いては、復元力などさまざまな要因により座屈変形モー ドが特異な波状座屈になる可能性があることがわかって いる. その特異な座屈変形に関して,一方向に抵抗力を 持つばねを有するモデルを用いた過去の研究では、軸対 称の座屈変形形状のみがみられた.本研究では非軸対称 の座屈変形についても表現できるモデルとして、全方向 に抵抗力を持つ弾性体を有する球殻を想定し、座屈時に 球殻がどのような変形を起こすのかについて変分法を用 いて解析を行った.また球殻の強度・内部の弾性体の抵 抗力など諸条件の違いによって座屈強度はどのように変 わってくるのか, 座屈変形したときの球殻の形状にどの ような違いが起こるのかについても解析を行った.

2. 解析モデル

図1 解析モデル

図1は解析対象とする Winkler Foundation を有する球 シェルのモデル図を示したものである. ヤング係数E, 半径a,厚さh,ポアソン比vの球シェルの内部にバネ剛 性 k_f の半径方向のみの抵抗力(Winkler Foundation)が作用 する. 本研究では内部に弾性体を有する球殻を想定して いるが,弾性体は本来あらゆる方向の圧力から影響を受 ける抵抗力を持つため,全方向から影響を受けるバネ剛 性 k_f として定式化し解析を進めた.

3. 変分法による解析理論

構造物について、ある変位 x_0 のときの釣合・安定な

どの状態を調べるために、変位が x_0 から x_1 に微小変化 したしたときの力学的エネルギー変化 ΔU を考える.こ の場合 ΔU は以下のように表わせる.

$$\Delta U = U(x_0 + x_1) - U(x_0) \tag{1}$$

この式に Taylor 展開を行うことで次式が得られる.

$$\Delta U = \delta U + \frac{1}{2!}\delta^2 U + \frac{1}{3!}\delta^3 U + \cdots$$
(2)

ここでは球殻が座屈状態にあることを想定しているが, このときエネルギーは不安定状態にある. 言い換えると 座屈状態では,力学的エネルギーが最小値をとる安定状 態になることが起こり得ないため,その一次導関数が0 かつ二次導関数が負の値をとらないということがいえる. このことから,座屈時は以下の条件を適用できる.

 $U''(x_0) \ge 0 \tag{3}$

これより座屈状態における力学的エネルギーの条件が以下のように得られ、これに従って座屈時の球殻の弾性座 屈荷重と変位を導出する.

$$\delta\left(\delta^2 U\right) = 0 \tag{4}$$

4. エネルギーの定式化

球殻の全力学的エネルギーUは、伸びによるエネル ギー U_M と曲げによるエネルギー U_B 、外圧力pによるエ ネルギー Ω 、Winkler foundation によるエネルギー U_F の 和として以下の形で与えられる.

$$U = U_M + U_B + \Omega + U_F \tag{5}$$

$$U_{M} = \frac{C}{2} \int_{A} \left(\varepsilon_{\phi}^{2} + \varepsilon_{\theta}^{2} + 2\nu \varepsilon_{\phi} \varepsilon_{\theta} + \frac{1-\nu}{2} \gamma_{\phi\theta}^{2} \right) dA$$
(6)

$$U_{B} = \frac{D}{2} \int_{A} \left[\chi_{\phi}^{2} + \chi_{\theta}^{2} + 2\nu \chi_{\phi} \chi_{\theta} + 2(1-\nu) \chi_{\phi\theta}^{2} \right] dA$$
(7)

$$\Omega = -\int_{A} pwdA \tag{8}$$

$$U_F = \frac{k_f}{2} \int_A w^2 dA \tag{9}$$

ここにおいて ε , γ , χ はそれぞれ伸び, せん断, 曲げに 関するひずみであり,C,Dはそれぞれ伸び, 曲げの剛性 に関する係数である.

上記より得られたエネルギーに変分原理を適用すること によって座屈現象に対応する支配方程式を得ることがで きる¹⁾.その支配方程式に対し,座屈後の変位を座屈 形状の波数*n*,*m*を用いて表し,固有値を解くことに よって弾性座屈荷重と座屈変形後の変位を求める²⁾.

5. ばね剛性の定式化

エネルギー式において、シェルが内部に弾性体を有す るモデルを想定し, w方向のみではなく全方向の力か ら影響を受ける Winkler foundation のばね剛性 k_i を表現 していく.

k.を導出するためには、内部に弾性体を有するシェル について応力式・変位式を求める必要があり、その応力 と変位の関係を導くことでばね剛性k,を定式化した. ここで、内部に弾性体を有するシェルの変位式について は以下のように表すことができる³⁾.

$$\mathbf{u}(r,\theta,\phi) = \sum_{n=0}^{\infty} \sum_{m=-n}^{m=n} C_{11}^{(mn)} r^{n+1} V_{nm} + C_{21}^{(mn)} r^n X_{nm} + \left[\frac{2n+3}{2} \frac{B_{(n)}}{C_{(n)}} C_{11}^{(mn)} r^{n+1} + C_{32}^{(mn)} r^{n-1} \right] W_{nm}$$
(10)

式中での関数 V_{nm}, X_{nm}, W_{nm} は次のように表される.

$$V_{nm} = -\sqrt{\frac{n+1}{2n+1}} Y_n^m e_r + \frac{1}{\sqrt{(n+1)(2n+1)}} \frac{\partial Y_n^m}{\partial \theta} e_\theta + \frac{im}{\sqrt{(n+1)(2n+1)}} \sin \theta} Y_n^m e_\phi$$
(11)

$$X_{nm} = 0 - \frac{m}{\sqrt{n(n+1)}\sin\theta} Y_n^m e_\theta - \frac{i}{\sqrt{n(n+1)}} \frac{\partial Y_n^m}{\partial\theta} e_\phi$$
(12)

$$W_{nm} = \sqrt{\frac{n}{2n+1}} Y_n^m e_r + \frac{1}{\sqrt{n(2n+1)}} \frac{\partial Y_n^m}{\partial \theta} e_\theta + \frac{im}{\sqrt{n(2n+1)} \sin \theta} Y_n^m e_\phi$$
(13)

ここでのYmは球面調和関数で、3次元のラプラス方程 式の解を球座標で表したときの角度部分の関数である. また式において、 $C_{ii}^{(nm)}$ は座屈波数m, nに関する定数 であり, $B(n) \ge C(n)$ については以下のように表される.

$$B_{(n)} = \frac{(\lambda + \mu)\sqrt{n(n+1)}}{2n+1} \qquad C_{(n)} = \frac{n\lambda + \mu(3n+1)}{2n+1}$$
(15)

ここにおいて μ , λ はラメ定数であり, 弾性体のヤング 係数 E_とポアソン比 v_からなるパラメータである.次 に、応力については以下のように表わすことができる.

$$\frac{\sigma_{rr}^{(nm)}}{2G} = \sqrt{\frac{2n+1}{n+1}} \frac{(n+1)m(n^2 - n - 2 - 2/m)}{2[m(3n+1) - 2(2n+1)]} C_{11}^{(nm)} r^n Y_n^m + \frac{n(n-1)}{\sqrt{n(2n+1)}} C_{32}^{(mn)} r^{n-2} Y_n^m$$
(16)

式中でのGはせん断弾性係数を表す.これらの式から、 変位式において r 方向にのみ1単位の変位が起こると 仮定しC(nm)の値を求め、それを応力式に適用すること で弾性体の挙動を想定したばね剛性 k_i の値を求めた. 得られた k_{f} 式は以下の形をとった.

$$k_{f} = \left[\frac{(1+n)(-2-2m-mn+m^{2}n)}{-2+m(1+3n)} + \frac{(-1+n)(2\sqrt{n}C_{(n)} + \sqrt{n+1}(3+2n)B_{(n)})\sqrt{n}}{(1+2n)C_{(n)}}\right]\frac{G}{r}$$

ヤング係数比と肉厚比に対する座屈荷重 図2

5. 解析結果

図1は、座屈時の球殻の形状を表したものである。弾 性体のヤング係数が小さい段階では*m* 方向のみの波状 座屈である軸対称の変形が起こったが、弾性体の抵抗が 大きい状態においてはm,n両方向の座屈である非軸対 称の変形がみられた.

図2は、球殻と弾性体のヤング係数比E。/Eおよび 肉厚比a/hに対応する座屈荷重比 Pcr/P_0 を示したもの である. ここで無次元化に用いた座屈荷重 Poは Timoshenko による古典座屈荷重である⁴⁾. 図2より, ヤング係数比と肉厚比の増加にともなって座屈荷重比が 増加することがわかる.

6. まとめ

本研究によって,以下の知見が得られた.

 内部に弾性体を有するモデルでも軸対称の座屈形状は 見られるが、弾性体の抵抗が大きい場合には非軸対称の 座屈変形が起こる.

 ・球シェルの座屈荷重はヤング係数比と肉厚比に依存し、 それぞれが大きいほどその座屈荷重も大きくなる. 参考文献

1) M.Sato, M.A.Wadee, T.Sekizawa, K.Iiboshi, and H. Shima: Hydrostatically pressurized buckling of complete spherical shells filled with an elastic medium, 土木学会論文集 A2 (応用力学) Vol.67, 2) W.Flugge,: Stress in shells Second Edition, Splinger-Verlag, Berlin(1962). No.2, I 15-I 22,2011.

(17)

3) H. B. McClung: The elastic sphere under nonsymmetric loading, Journal of Elasticity 21: 1-26, 1989

4) S.P. Timoshenko, and J.M. Gere,: Theory of Elastic Stability, 2nd Edition McGraw-Hill(1962), 512-517