積層圧電アクチュエータによる局部加振法を用いた

鉄道廃線橋梁の損傷検出の研究

Research on the defect detection of the abolished railway bridge by using local excitations with an electromagnetic actuator

学正員	〇坪川良太
フェロー	大島俊之
正員	三上修一
正員	宮森保紀
正員	山崎智之
	学正員 フェロー 正員 正員 正員

1 はじめに

現在、建設されている橋梁の多くは高度経済成長期に 建設されており、建設されてから数十年経過しておりな んらかの損傷が起こっている可能性があると考えられる。 また、今後使用限界を超える建造物が増えることが予想 される。使用限界を超える構造物を造り直すことは我が 国の財政状況では困難である。そのため、構造物の長寿 命化を目指すことが急務となっている。構造物の長寿 命化を目指すことが急務となっている。構造物の長寿 化を行うために構造物の使用評価を行う必要がある。増 えてくる使用限界を超える構造物の使用評価を行うため に目視点検以外の簡便かつ容易な方法の確立が急がれて いる。本研究では積層圧電アクチュエータを使用して局 部加振実験を行い振動特性の変化を測定解析して、損傷 を同定する。

2 実験概要

2.1 実験方法

実験橋梁に加速度計と加振器(アクチュエータ)を設置 した。設置した加速度計で実験橋梁を局部加振し、加速 度応答を計測する。実験橋梁には損傷を加えている。損 傷を加えていない状態(健全状態)と損傷を入れた状態(損 傷状態)の応答加速度を測定する。

2.2 実験橋梁

実験橋梁は平成18年に廃線となったふるさと銀河線 の鉄道橋を使用している。橋梁名は信濃川橋、橋長は 6960[mm]、主桁間隔は1130[mm]となっている。実験橋 梁の写真を図-1に示した。

図-1 実験橋梁(A-2から)

2.3 実験条件

実験橋梁の平面図は図-2 に示した。加速度計は総数 16 個設置した(以下の説明では加速度計の番号を ch(1、 2…)とする)。加速度計は上下のフランジと腹板に水平 方向に設置した。上下フランジに設置した加速度計は合 計 14 個で ch(1、3、5、10、12、14、16)を上フランジに 設置し、ch(2、4、6、9、11、13、15)を下フランジに設 置した。腹板に設置した加速度計は合計 2 つで ch(7、8) を設置した。加振器は一個使用しており ch11 と ch13 の 間の腹板に設置している

損傷の様子を図-3、図-4 に示す。損傷は主桁 G-1 の中 央部の下フランジに亀裂を加えた。損傷は亀裂を2 段階 で加えた。1 段階目は下フランジの4分の1 加え、2 段 階目は下フランジの2分の1 加えた。以下の説明では健 全状態を D-0、1 段階目の損傷を D-1、2 段階目の損傷 を D-2 とする。

加振は sweep 波による加振を行った。加振周波数は 1-750[Hz]まで一様に変化する sin 波(sweep 波)として、 加振時間を 20[sec]とした。本実験では初期荷重は 49[N] とした。加速度応答を計測する際のサンプリング周波数 は 10000[Hz]とした。

図-3 D-1

図-4 D-2

2.4 損傷評価方法

実験で得られた加速度波形から高速フーリエ変換を用 いてパワースペクトル密度(PSD)を算出し、下フランジ を切断した状態(損傷状態)の PSD と損傷を入れてない状 態(健全状態)の PSD の差を算出する。算出された PSD の差は周波数ごとに算出している。損傷状態と健全状態 の PSD の最大値を比べ小さい方の状態で PSD の差を除 算する。

$D_{i} = \left G_{i}(f) - G^{*}_{i}(f) \right $	
$D_i = \overline{(G_i(f)_{\max}, G^*_i(f)_{\max})_{\min}}$	
$D_i(f)$:PSD の変化率	
$G_i(f):健全状態の PSD$	
G [*] _i (f):損傷状態の PSD	

PSD 解析データを上記の式で計算した変化率を設置 加速度計番号(n)と解析周波数(m)ごとに算出し、マトリ ックス[*D*]で表す。

次に、周波数ごとマトリックス[D]を比べ一番大きい 加速度 ch を検出する。検出された加速度 ch を 1 としそ の他を 0 とした。マトリックス[D]は行要素の損傷の影 響について計算しておりマトリックス[C]は列要素の損 傷の影響について計算している。

マトリックス[D]の合計値である total change と、マト リックス[C]の合計値である damage detection を掛けるこ とにより損傷指数(damage indicator)を算出した。損傷指 数(damage indicator)の値は ch ごとに算出され、値が大 きい加速度計周辺に損傷の影響を受けている可能性が高 いことを表している。損傷評価は損傷指数の大きい場所 をより明確にする手法を施した。T.C の標準偏差を δ 、 D.D の標準偏差を λ と定義する。T.C と δ の 2 倍の差を SD2、D.D と λ の 2 倍の差を SC2 と定義する。SD2 と SC2 をかけ合わせることにより D.I2 を算出した。本研 究では D.I2 の値により損傷の評価を行った。

2.5 FEM 解析による解析周波数の算出

微小欠陥の影響を受ける周波数の算出のため FEM に よる固有振動解析を行った。FEM モデルの支持条件は 単純支持、単位重量 7.857x10⁹、ヤング係数 2.0x10⁵ で 行った。モデルを図-5 に示す。解析は D-0、D-1、D-2 のモデルを作成し固有振動解析を行った。固有振動解析 の結果を表-1 のように固有振動数とモード形状をまと め、モード形状から下フランジへの影響が大きい周波数 を特定した。表-1 により 200-600[Hz]での主桁 G1 のモ ードの数が多い。200-600[Hz]でのモード形状が主桁 G1 の下フランジの損傷に影響すると考えられる。このため 解析周波数を 200-600[Hz]とした。

図-5 FEM モデル(A-2 から)

表-1	周波数あた	こり	に影響す	るモー	ドの数
-----	-------	----	------	-----	-----

損傷	D0		D1		D2	
主桁	G1	G2	G1	G2	G1	G2
周波数[Hz]						
1-100	2	3	3	3	2	3
100-200	2	2	1	2	1	1
200-300	2	3	2	2	2	2
300-400	3	7	3	6	3	6
400-500	9	3	10	7	11	7
500-600	9	7	9	8	8	8
600-700	4	9	6	10	6	10
700-750	3	4	6	3	4	4

3 実験結果

本章では解析方法による検討を行った。検討ではマト リックス[C]の周波数の範囲を加振周波数範囲(1-750[Hz])で損傷指数を算出した場合と2章5節で算出さ れた微小欠陥の影響を受ける周波数範囲(200-600[Hz])に 絞り損傷指数を算出した場合の比較を行った。損傷指数 を図-6に示した。図-6では4個のグラフを示した。(a)、 (b)では解析周波数範囲を1-750[Hz]で損傷指数を算出し た結果を示している。(c)、(d)では微小欠陥の影響を受 ける周波数範囲(200-600[Hz])での損傷指数を示している。 解析周波数の違いによる損傷位置の評価について以下の ようにまとめた。

(a)のグラフでは ch(2、4、12、14)の損傷指数の値が大 きく ch(2、4、12、14)周辺に損傷があると評価できる。 損傷位置に近い加速度計 ch は ch(2、3、4)であり ch(12、 14)は損傷位置から遠い。(b)のグラフでは ch(2、3、4)の 損傷指数の値が大きく ch(2、3、4)周辺に損傷があると 評価できる。解析周波数を微小欠陥の影響を受ける周波 数にした(c)のグラフでは ch(2、4)の損傷指数の値が大き く ch(2、4)周辺に損傷があると評価できる。同じ損傷で ある(a)では ch(2、4、12、14)の損傷指数が大きかったの で損傷位置の評価の精度は良くなっている。(d)のグラ フでは ch(3、4)の損傷指数の値が大きく ch(3、4)周辺に 損傷があると評価できる。同じ損傷状態である(b)のグ ラフでは ch(2、3、4)の損傷指数が大きかったので損傷 位置の評価の精度は良くなっている。

4 まとめ

今回の実験で得られた損傷指数から損傷位置や損傷の 影響を与える位置の評価ができた。また、事前に損傷が 起きやすい位置が特定できていればより精度の良い損傷 位置の評価ができることが証明された。鋼構造部材を圧 電アクチュターで局部加振し、得られた加速度応答から 損傷を評価する本手法は鋼構造部材の損傷検出に有効で あることが証明された。他の損傷に対しても本手法を用 い損傷が評価できる。

謝辞

本研究は(独)科学技術振興機構(JST)戦略的国際科学技 術橋梁推進事業(研究代表者:大島俊之)の支援を受けて実 施した研究の一部である。 ご支援に深く感謝申し上げます。

参考文献

- 三上、シェリフ・ベスキロウン、山崎、大島: 振動帯域を考慮した圧電アクチュエータ加振に よるコンクリート部材の損傷検出に関する研究、 応用力学論文集、Vol.10、pp.77-88、2007.8
- S.Mikami, S.Beskhyroun, Y.Miyamori, T. Oshima : Application of a vibration-based damage detection algorithm on a benchmark structure, tructural Health Monitoring of Intelligent Infrastructure, Vol.3, CD-ROM(No.55), 2007
- 3) 土木学会:橋梁振動モニタリングのガイドラ イン,2000