既設防波施設を利用した振り子式波力発電の提案

Proposal of wave power extraction utilizing existing coastal structure by Pendulor system

苫小牧工業高等専門学校環境都市工学科	OE	員	浦島	三朗	(Saburo Urashima)
株式会社アルファ水工コンサルタンツ	名誉	会員	近藤	俶郎	(Hideo Kondo)
株式会社アルファ水工コンサルタンツ	正	員	川森	晃	(Akira Kawamori)

1. まえがき

室蘭工業大学のグループは防波堤と兼用できる波力発 電システムとして振り子式システムを開発し,室内実験 および実海域での試験を実施し,その高効率性と安定性 を確認した^{1),2)}。また,振り子式変換システムを収納す る開ロケーソンは,エネルギー吸収により従来の直立型 防波堤に比べ,水平および鉛直波力が小さくなっている ことを室内実験と実海域の試験で明らかにした³⁾。

本論文は、この特性を利用して、既設の直立型防波堤 や護岸、もしくは混成防波堤直立部の沖側に振り子式発 電用開ロケーソンを設けるシステムを提案し、発電コス トを試算し、その有効性を確認する。

2. 三種のシステムと作用波力

既設混成防波堤を対象に、その前方におく図-1 に示 すような3種の開口ケーソンを対象とする。

A は既設の防波堤が充分安定な場合であり,開口ケー ソンによる波力減少は期待しなくとも良い場合である。 開口ケーソンは軽重量で良く,鋼製が考えられる。 B は既設防波堤の安定度が低くて,近い将来に補強するこ とが必要な場合であり,鉄筋コンクリート製となる。 C は浮上形として研究されたもの⁴⁾を適用した案で,既 設防波堤前方への拡幅が制約され,開口ケーソン幅を狭 くしなければならない場合であり,吸収エネルギー量は A, B よりも減少する。 以後は A と B について検討する。

2.1 振り子式開口ケーソンの波力

振り子式開ロケーソンに作用する波力について筆者ら は、室内実験と実海域試験の結果から波力式を提案して いる。 図-2 のように水室の数が Nの開ロケーソンに対 する水平波力と揚圧力については下式で示される³³。

(1) 水平波力

ケーソン全体に作用する全水平波圧 P_H は、次式で与えられる。

$$P_{H} = 2P_{sw}d_{sw} + (N-1)P_{Dw}d_{pw} + NC_{w}P_{p}$$
(1)

ここで、 P_H はケーソン全体についての全水平波圧、 P_{sw} 、 P_{Dw} 並びに P_p は、それぞれ側壁、隔壁並びに振り子板に 作用する単位幅員当りの水平波圧、 d_{sw} 、 d_{pw} 並びに C_w はそれぞれ側壁、隔壁並びに水室の幅員である。

図-2 開口ケーソンの波力(岸向き)

また, P_pは次のように表現される。

$$P_{p} = p_{pl}D'$$

$$p_{pl} = 0.8w_{0}H$$

$$D' = h' + d_{ow} + 1.25H$$
(2)

ここで, w₀は海水の単位体積重量, H は波高, h' は水 室水深, d_{aw}は底版の厚さである。

(2) 揚圧力

開ロケーソンの底版に作用する揚圧力は下式で与えら れる。

$$P_U = p_u l B$$

$$p_u = 0.15 w_0 H$$
(3)

ここで, *l*と*B*は, ケーソンの長さと幅員である。

2.2 複合構造体の波力

式(1)~(3)による開ロケーソンの波力と,混成防波堤の波力についての広井式を用いて,既設防波堤直立部と開ロケーソンからなる複合構造体の波力は以下のように 推定される(図-3)。

(1) 水平波力

開ロケーソンが既設防波堤に剛結されていることを前 提にするならば、水平波圧は式(1)で与えられる。P_{sw}と P_{Dw}については、次式を採用する。

$$P_{sw} = P_{Dw} = 1.5w_0 HD'$$
 (4)

これより P_H は

$$P_{H} = \left[1.5(l - NC_{w}) + 0.8NC_{w}\right] W_{0}HD'$$
(5)

(2) 揚圧力

底部揚圧力は図-3 に示されるように,開口ケーソンと 既設直立部に作用する両者からなる。後者は,海側端揚 圧力強度を前者と等しいとし岸側端をゼロとして求める こととすれば,複合構造全体では下式で表される。

$$P_{U} = \left[0.15B + \frac{1}{2} \cdot 0.15B_{o}\right] W_{0}Hl$$
(6)

2.3 既設防波堤との波力の比較

複合構造物の波力と既設防波堤の波力の比は,以下 のように推定される。ここで,添え字 *o* は,既設防波 堤を示している。

(1) 水平波力

$$\frac{P_H}{P_{Ho}} = 1 - 0.47 \cdot \binom{NC_w}{l} \tag{7}$$

一般的に $(NC_w/l) \ge 0.8$, であるから

$$P_{H}/P_{Ho} < 0.6$$
 (8)

(2) 揚圧力

$$\frac{P_U}{P_{Uo}} = 0.12 + 0.24 \cdot \left(\frac{B}{B_o}\right) \tag{9}$$

一般的に $(B/B_a) \leq 1$,を想定すると

$$P_U / P_{Uo} < 0.36 \tag{10}$$

式(8),(10)から,合成構造物の全波力は既設防波堤の全 波力に比べて,水平波力で約30%,揚圧力で約60%となる。 以上の結果から,滑動安定限界波高は約2倍に増加するこ とが期待できる。

2.4 既設防波堤との接続方法

近藤ら⁵は、既設防波堤と新たに付加する構造物の接 続方法について提案している。付加型のケースの場合は、 アンカーボルトで既設防波堤と鋼製フレーム開ロケーソ ンを固定し、補強型のケースの場合は、既設防波堤と鉄 筋コンクリート開ロケーソンの間隙に水中コンクリート を打設して固定する方法を提案している。

2.5 構造特性

(1) 鋼製フレーム(A型)

図-1 に示す鋼製フレームを用いた付加型(A型)の場合, 波力は前述の複合構造体の波力として求めることができ る。今,図-4 に示すように長さ 5m,幅員 10m からなる 鋼製フレーム開口ケーソンを4つ連結した例を考える。

平成22年度 土木学会北海道支部 論文報告集 第67号

図-4 鋼製フレームを用いた設計例の概略図

側壁部,底板部および背後部には,中間支柱およびはり で補強している。また,波のエネルギーが振り子に効率 よく変換されるように,側壁と底板に鋼板をはり,水の 移動を防いでいる。各フレーム,支柱およびはりには, 200×200mmのH型鋼を用いた。

付加型鋼製フレームの開ロケーソンは自重を小さくで きるが,転倒および滑動に対する安定限界波高は鉄筋コ ンクリート製の開ロケーソンより大きくなる。

(2) 鉄筋コンクリート開ロケーソン(B型)

図-2に示す鉄筋コンクリートケーソンは3室(ハ=3) で ある。室蘭港に設置された開口ケーソンは2室である。 図-4の A 型と同じ全長20m, 4水室の場合について, *d_{sw}*= *d_{bw}*= *d_{ow}* = 0.5m, *d_{pw}*= 0.4m, *C_w*= 4.45m となる。

3. 発電コストの試算

3.1 対象構造物と設計条件

日本海側の本土の港を対象に,定格 450kW の波力発電 施設を設置する。離島の場合については,近藤ら⁵⁾によ って推定されている。設計波は表-1 に示すように機械 設備の耐用年数に合わせて,開口ケーソンも 15 年再現 波を採用している。

取得電力は既存の電力網に投入することを想定する。 表-2は機械システム(振り子板,油圧変換機,発電機) **表-1** 設計波

X · KHW				
水深	L.W.L下 10 m			
設計潮位	+1.0 m			
平均波パワー	10 (kW/m)			
再現期間 15 年設計波	H'_{o} = 6m, $T_{1/3}$ = 12sec.			

表-2 機械設計条件

ケーソン寸法	長さ 20m, 幅員 10m
一基当たりの平均入力	10×20
波パワー	= 200 kW
総合効率	0.45
定格出力	$200 \times 0.45 = 90 \text{ kW}$

の設計条件である。 総合効率は**表-2**に示した 0.45 を 採っている。

ケーソンの1ユニットの長さを 20m とし、5 ユニット, 全長 100m である。 以下のコスト計算は1ユニット当り にしてある。

3.2 発電コスト

波力電力の建設コスト(円/kW)や発電コスト(円/kW) kWh)は水力発電に準じて推定される。 ここでは寒地港 湾技術研究センターが用いた波力発電コスト C_G (円/kWh) の推定方法⁶⁾に準じて試算する。

年間発電量		8760		定格出ナ	5] 以在問窍働家
(kWh/年)	=	_(hr/年)_	×	(kW)	_	×中间你闯平

(12)

表-3 建設費・年間固定費・運転費

型 式 費用(千円)	鋼製フレーム型	コンクリート型
A:構造物建設費	33,000	90, 000
B:機械と電気設 備	30, 000	30, 000
C: 建設費 計	63,000	120,000
D: 年間固定費 = C×均等化係数 (15 年稼働,利率 2%,固定資産税率 1.4%)	63,000×0.0861 = 5,420	(30, 000) 20, 000 × 0. 0861 (2, 580) = 10, 330
E: 運転費	B×0.05 =30,000×0.05 = 1,500	1,500
F: 年間経費	D + E = 6,920	(4, 080) 11, 830

註:()の数値はコンクリート型で「構造物建設費」 を除いたもの。 振り子式システムの稼働率は,室蘭工業大学テストプ ラントでの現地試験^{1),7)}をもとに,次のように推定する。 本システムの特徴の一つとして,他種に比べて小さな波 高で運動が始まり,カットイン有義波高は0.3mである。 カットオフ波高は,振り子板の許容振れ角から定められ るものであり,カットオフ有義波高は4mとする。有義 波高0.3から4mの出現確率は,高橋ら⁸⁾によれば,日 本海の酒田沖で85%,太平洋の鹿島沖では95%であり, これを可能稼働率とする。ここでは日本海を対象とし, 点検修理などによる運転休止率を可能稼働率の約25% として,稼働率を0.85×0.75=0.6とした。したがって, 年間発電量6は下式による。

G = 定格×稼働率×365 日×24 時間

 $= 90 \times 0.6 \times 365 \times 24 = 473,000$ kWh

表-3の年間経費 Fを用いると,発電単価= F /Gは,

A)	鋼製フレーム型	15	(円/kWh)
B)	コンクリート型	25	(円/kWh)

C) B) でケーソン建設費を除いた 9 (円/kWh)

これより発電コストは、開口ケーソンが鉄筋コンクリー ト製に比べて鋼枠製では約 40% 安価になり、15 (円 /kWh)となった。 コンクリートケーソンの場合でも既設 防波堤の補強として、建設費が免除されるなら、9(円 /kWh)にまで低下する。

また,コストを発電コストに環境コスト,社会的コストを加えたトータルコスト⁹⁰で考えると,火力発電のコストよりも安くなる。

4. 本提案の応用

波力発電の利用は、世界のいくつかの海や海岸で現在 実現しているが、沖合風力発電に比べて非常に遅れてい る。その主要な理由は、他種のエネルギーとの価格競争 にある。

表-4 に波力発電の設置場所による入射パワー,用途の比較を示している。

防波堤の 設置場所	入射パワー	用途
直線的な海岸	低い	ロカルな照明,熱
半島,岬の海岸	高い	熱 ローカルな電気
離島の海岸	より高い	島の全エネルギー

表-4 設置場所と入射パワー,用途

離島の沿岸における平均波パワーは、同じ沖合波パワ ーを持っている本土の直線的海岸より比較的高い。その 理由は、前者は後者より広い角度を持つ入射波を受ける からである。また、半島においては、屈折の影響のため 波パワーは直線海岸より幾分高い。 離島では、ほとんどを石油ディーゼル発電に依存して おり、より遠いところから少量の石油を輸送するため、 石油価格は本土に比べて非常に高い。また、離島ではエ ネルギーは取得されたその近くで消費されるので、エネ ルギーの輸送コストは安くなる。よって、離島は波パワ ーの利用の面でも有利である。

5. むすび

- (1)式(8),(10)の結果から滑動安定限界波高は、既設の 防波堤と比べ約2倍増加する。
- (2)本提案による建設費は、開口ケーソン単独方式の建設費より安価であるので、発電コストは相当に安くなる。開口ケーソンを鉄筋コンクリート製でなく鋼枠製にすると、発電コストはさらに低下する。
- (3)本土の日本海海岸にある港における発電コストを試算した結果、本提案は風力発電に対抗できるケースがあることが明らかになった。
- (4)離島では石油ディーゼル発電に依存しているため, 発電単価は非常に高価になっている。一方,本土よりもより強い入射パワーを常に受けており,本提案は非常に有効である。

謝辞:振り子式の機械システムに関して,懇切にご指導 頂いた渡部富治博士に感謝いたします。

参考文献

- 1) 渡部富治, 近藤俶郎:波力発電, パワー社, 147p., 2005.
- T.Watabe, Utilization of the Ocean Wave Energy, T-Wave Consulting Volunteer, 151p., 2008.
- 浦島三朗, 近藤俶郎, 谷野賢二, 長内戦治: 波力発電用 開ロケーソンの安定性に関する検証, 海岸工学論文 集, 第 52 巻, pp. 716-720, 2005.
- 4) 古澤彰範,近藤俶郎,藤間聡,長谷川覚也:浮上形振り子式波浪発電システムの研究,海岸工学論文集, 第 41 巻, pp. 1166-1170, 1994.
- 5) 近藤俶郎, 浦島三朗, 川森晃, 綿貫啓:離島の既設防 波堤を利用する低コスト波力発電の提案, 海洋開発論 文集, 第26巻, pp. 369-374, 2010.
- H.Kondo, F.Taniguchi, S.Osanai and T.Watabe, Cost analysis of the wave power extraction at breakwaters, Proc of 12th ISOPE, ISOPE, pp.614-618., 2002.
- 近藤俶郎,谷口史一,渡部富治,浜田和哉:新型振 り子式波浪発電の現地性能試験,海岸工学論文集, 第46巻, pp. 1261-1265, 1999.
- 高橋重雄,安達崇:日本海周辺における波パワーの 特性と波力発電,港湾技術研究資料,No.659,港湾 技術研究所,18p., 1989.
- 9) H.Kondo, I.Sugioka and S.Osanai, The concept of true cost of energy and its application to ocean energies, Proc. of International Symp. on Ocean Energy Development, Muroran Inst.Tech and Cold Region Port & Harbor Research Center, pp.101-106. ,1993.