LIF による混入気泡から水中への酸素輸送過程の計測

LIF Measurement of Oxygen Transfer from Air Bubble to Water

北海道大学大学院工学院 学生会員 新井田靖郎 (Yasuo Niida) 北海道大学大学院工学研究院 正会員 渡部靖憲 (Yasunori Watanabe)

1. はじめに

水表面を介した気体輸送は気候変動予測,汚染物質循環, 生態系を含めた水環境保全を考える上で重要であり,これま で多くの研究が行われてきた1).特に,豊かな生態系を有す る沿岸域における大気から海域への酸素輸送は沿岸域生態系 を評価する上で一つの重要な指標となる。現在の大気 海洋間 気体輸送モデルは、海洋での観測結果を基にしたパラメータ スタディによって作られてきたために,これをそのまま沿岸 域に適用することはできない.また Liss · Merlivat $(1986)^{2)}$ に代表される一般的なモデルは海上風速を唯一のパラメータ としたものであることが多いが,90年代以降,砕波時に発生 する気泡が気体輸送に大きな役割を果たすことが指摘されて きた³⁾.したがって,沿岸域を対象としたより精度の高い酸 素輸送モデルの構築には気泡の影響の定量的評価が不可欠で ある.しかし現状では,砕波時の気泡量,気泡径スペクトル, 滞留時間,侵入深さ等の諸特性に関する知見も不十分であり、 気体輸送係数のパラメタリゼーションにおいて気泡の特性量 がどのように寄与するのかについては全く不明である.

近年,水中の溶存ガス濃度場の計測手法として Laser Induced Fluorescence (LIF)法が広く用いられている(例えば, Woodrow・Duke,2001⁴⁾; Tumori and Sugihara,2007⁵⁾; Watanabe et al, 2008⁶⁾). LIF 法は水中の溶存ガス濃度場を 直接可視化・面計測できるため,通常の時間平均された一点 計測より多くの情報が得られる.そこで,本研究では気泡の 特性量と酸素輸送との関係の解明に向けて,LIF 法を用いた 気泡からの酸素輸送過程計測手法を開発し,その妥当性につ いて検討を行う.

2. 実験方法

本研究では LIF 法を用いて気泡から水中への酸素輸送を計 測する、Vaughan and Weber (1970)⁷⁾ はピレン酪酸(図-1 参照)が酸素濃度の指標として使用可能であることを報告し ている.また Woodrow and Duke (2001)⁴⁾ はピレン酪酸 ベースの LIF を用いて平滑および波形の界面を通じた空気中 から水中への酸素輸送計測を行っている.水溶液中のピレン 酪酸分子は紫外線を照射されることによっては励起され、蛍 光を発するが、溶液中に酸素が存在するとその蛍光は弱めら れる(酸素クエンチング).ピレン酪酸ベースの LIF はこの酸 素クエンチングを利用することによって溶存酸素濃度を測定 するものである.

一般に蛍光輝度 F とクエンチャー濃度 (酸素濃度)C の関係は以下に示す Stern-Volmer 式で表わされる.

$$\frac{F_0}{F} = 1 + k_{sv}C\tag{1}$$

ここで, F_0 はクエンチャー (酸素)不在時の蛍光輝度値であ り, k_{sv} は蛍光物質とクエンチャーの関係に依存する定数であ る.本研究でもこの性質を利用してピレン酪酸ベースの LIF を行うが,ピレン酪酸は水への溶解度が低いため,実験では 初めに 0.05M の温めた水酸化ナトリウム水溶液中に溶かす ことで 4×10^{-3} M のピレン酪酸水溶液を作成し,それを純水 で希釈することで実験で使用する 4×10^{-5} M ピレン酪酸溶 液を作成する.

図 1: ピレン酪酸

図 2: 実験装置概略図

実験はガラス水槽 (15cm×17cm×20cm,水深は 17cm) で 行われた.図-2に実験装置の概略図を示す.気泡の特性量と 気体輸送の関係解明のためには気泡と溶存気体濃度を同時に 計測することが可能な実験システムを構築する必要がある そこで本実験ではピレン酪酸を励起させる紫外線ライトを水 槽底面中央より照射し , 7cm×8cm の赤色 LED パネルによる バックライトを気泡撮影のため水槽背後より照射した.水槽か らの光は水槽前面に対して 45 度に傾けられたビームスプリッ ター (ハーフミラー) によって 2 方向に分けられ, それぞれ高 感度 12bit カメラ (解像度 696 × 520 画素,露光時間 25ms) と高速カメラ (シャッタースピード 0.5 ms, 500 fps, 解像度 1280 × 1000 画素) によって撮影される. 紫外線ライトの散 乱光および赤色 LED ライト光を除外するため高感度カメラ には中心波長 450nm バンドパスフィルターを装着し,励起蛍 光の影響を除外するために高速カメラには赤色フィルターを 装着した.酸素ガスはマスフローコントローラー (HORIBA SEC-E40) によって流量を調節し,水路底面中央に設置され た内径 0.4mm のノズルより注入する.キャリブレーション を含むすべての実験は室温 14.5 の暗室内で行われた.

図 3: 蛍光輝度の空間分布 (気泡無混入静水時)

3. 結果と考察

(1) キャリブレーション

LIF 法による溶存ガス濃度場測定では光学系に依存する局 所的な蛍光輝度特性を把握しておく必要がある.図-3 は図-2 に示す光学系において得られた気泡無混入静水状態時(DO = 1.50mg/L,水温14.5)の蛍光輝度の空間分布である.蛍 光輝度は画像内の最大値で正規化してある.画像内における 酸素濃度は一定であるが,紫外線光源に近い画像下端中央で 最大輝度を示し,上部に行くほどその輝度値は低下している. これは画像内で励起光の減衰が起きていることを示している.

一般に, 蛍光輝度は励起波の強度に依存する. 流体を進む 光の強度は式 (2) に示す Lambert Beer の法則に従って減 衰する.

$$\frac{I}{I_0} = exp(-C_{PBA}l) \tag{2}$$

ここで I は流体内の光の強度, I₀ は光の初期強度, は定数,1 は距離である.図-4,図-5 はそれぞれ図-3 における xpixel = 348 における蛍光輝度の縦断面図とy pixel = 260 における横断面図である.縦断面図では Lambert Beer の 法則に従って距離とともに紫外線の強度が落ちるため,蛍光 輝度も距離とともに急激に減衰する.画像の上端部の蛍光輝 度では下端部の 50%ほどにまで落ち込んでいる.また図-5 の横断面図は紫外光の拡散のために中心線に軸対象の緩やか な広がりを示した.

次に,水槽底面より酸素/ブリングを行い酸素濃度と蛍光 輝度の関係を調べた.バブリングは水槽全域にわたって行い, 溶存酸素濃度の局所的な分布が生じないように水槽内を撹拌し たのちに画像取得および溶存酸素メータ(HORIBA OM-51) での酸素濃度計測を行った.

図-6,図-7はそれぞれ測定の結果得られた溶存酸素(mg/L) と溶存酸素飽和度(%)のキャリブレーション曲線である.(水 温14.5)溶存酸素濃度が上昇するにつれて蛍光輝度比は逆 比例的に減少し,(1)式とも矛盾のないものであった.図-6, 図-7より,溶存酸素の高濃度領域では蛍光輝度比の減少が緩 やかなものとなっており,水温にもよるが,非常に高い過飽 和状態でLIFを用いて溶存酸素濃度を測定する際には注意が 必要である.図-6,図-7にはそれぞれ測定値とともに最小自 乗法で求めた近似曲線を併記した.下記に示すのが,経験的 に得られた蛍光輝度比 R と DO(mg/L)の関係式である.

$$DO = 253.3207R^2 - 453.9480R + 204.8492$$
(3)

(2) バブリング実験

図 5: xpixel 上の蛍光輝度分布

図 6: キャリブレーション曲線 (溶存酸素量と蛍光輝度 比の関係,水温 14.5)

バブリング実験では水路底面中央に設置されたノズルより 100ml/min の酸素を放出させた.図-8 に示すのは,本実験 で得られた気泡群のバックライト射影画像である.画像より Sobel 法でエッジを検出し,面積等価直径を計測した(図-9). 図-9よりこの条件下における気泡の直径はおよそ3 - 4mm に分布していることがわかる.バブリング時の蛍光輝度比の 分布を図-10 に示す.現段階では,気泡の陰影を取り除く処 理をしておらずその影響が相当含まれていると考えられるが 気泡の存在する画像中心軸付近で輝度の局所的な変化が見ら れる.ここで光学系に依存する局所的な蛍光輝度特性を相殺 するために,図-3と図-10の蛍光輝度の差をとり,図-11に 示す.図-11では Xpixel= 400 上均一に輝度差の大きい部分 が現われている.

4. 結論

本研究ではピレン酪酸ベースの LIF を用いて気泡から水 中への酸素輸送を計測を試みた.光学系に関する検討を行い, 画像内の紫外光線強度の空間分布を把握した.また気泡混入

図 7: キャリブレーション曲線 (溶存酸素飽和度と蛍光 輝度比の関係,水温 14.5)

図 8: 気泡群のバックライト射影画像

図 9: 気泡のエッジの検出例および各気泡の面積等価直 径測定例

下の溶存酸素濃度場の定量的評価に向けて,蛍光輝度と溶存 酸素濃度の関係を示すキャリブレーション曲線を経験的に求 めた.さらにパブリング実験を行い,手法の妥当性について 検討を行った.気泡陰影の除去を行っていないのでその影響 がどの程度あるか現時点では不明だが,局所的な蛍光強度の 減退を確認した.今後は気泡陰影除去の画像処理手法を確立 し,気泡運動と溶存ガス濃度場の同時計測を行うとともに,

図 10: バブリング時の蛍光輝度分布

図 11: 図-3 と図-10 の蛍光輝度の差

広範な気泡流れについて実験を行い気泡による水中への気体 輸送の解明に向けた検討を行う.

参 考 文 献

- 1) Jahne, B. and H. Haubecker (1998): Air-water gas exchange, Annu. Rev. Fluid Mech., 30, 443-468.
- 2) Liss, P. and L. Merlivat (1986): Air-sea gas exchange : introduction and synthesis. In P. Buat-Menard (Ed), The role of air-sea gas exchange in geochemical cycling, 113-127.
- 3) Farmer, D. M., C. L. McNeil and B. D. Johnson (1993): Evidence for the importance of bubbles in increasing air-sea gas flux, Nature, 361, 620-623.
- 4) Woodrow, P. T. and S. R. Duke (2001): Laser-Induced Fluorescence Studies of Oxygen Transfer Across Unsheared Flat and Wavy Air-Water Interfaces, Ind. Eng. Chem. Res., 40, 1985-1995.
- 5) Tsumori, H and Y. Sugihara (2007): Lengthscales of motions that control air-water gas transfer in gridstirred turbulence, Journal of Marine Systems, 66, 6-18.
- Watanabe, Y., J. Otuka and A. Saruwatari (2008): Laser Induced Fluorescence Measurements of Carbon Dioxide Dissolution in Wave-Breaking Turbulence, ICCE, 51-59.

7) Vaughan, W. M. and G. Weber (1970): Oxygen Quenching of Pyrenebutyric Acid Fluorescence in Water. A Dynamic of the Microenvironment., Biochemistry,9, 464-473.