大地震動を受ける曲線高架橋の動的応答における鋼製ダンパーの影響

Effect of Steel Dampers on Dynamic Response of Curved Highway Viaducts under Great Earthquake Motions

北海道大学大学院工学研究科	F会員	林川	俊郎	(Toshiro Hayashikawa)
北海道大学大学院工学研究科	学生員	中川	吉紹	(Yoshitsugu Nakagawa)
北海道大学大学院工学研究科	正員	松本	高志	(Takashi Matsumoto)
北海道大学大学院工学研究科	正員	何興	興文 (Xing wen He)

1. まえがき

1995 年 1 月 17 日の兵庫県南部地震では、高速道路や 新幹線、さらに地下鉄や港湾などの公共都市施設に多く の被害が発生した。特に、高架橋で数多くの被害が発生 した。橋梁の被害は、支承や橋脚などの地震力が集中す る個所での損傷、崩壊が原因となったものが多く、それ らの被害にともなって、上部構造も著しい被害が生じた。 鋼橋被害の例としては、支承の破損、桁の落橋、橋脚の 座屈、地盤破壊による上部構造の崩壊などが挙げられる。 そのために 2002 年に大幅に改訂された「道路橋示方書 耐震設計編」に記述されているように、上部構造・支承・ 橋脚を一つの構造システムとして捉えた橋梁全体系の大 地震時動的挙動を調べる必要がある^{1)、2)}。また、地震被 災後の早期復旧の観点から橋の重要度に応じた「耐震性 能」が定義され、建築分野では既に主流であった「制震」 の考え方が導入された。橋の大規模地震対策として、地 震エネルギー吸収を期待する塑性化部材を用いることに よって橋の減衰能力を高め、構造部材に生じる作用力自 体を小さく抑えようとする方法である。レベル2地震被 災時において、塑性化部材に意図的に損傷を集中させて 橋の主要部材の応答は弾性内抑え、残留変位などを生じ させないようにすることで橋梁の使用性能を維持する。 また、複雑な路線線形をなすインターチェンジや湾岸高 速道路、利用可能範囲に制限のある建設空間など直線高 架橋の導入の難しい場所において曲線格子高架橋は非常 に重要な存在となってくる。しかし、曲線格子高架橋は 3次元的な広がりを有する構造物であるため平面解析に よる正確な挙動の評価は困難である。また地震時の上部 構造の複雑な回転挙動や、支承の損傷などにより過去の 地震では深刻な損傷を受けた事例も少なくない³⁾。

そこで,本研究では3径間連続桁と単径間のアプロー チ桁から構成される曲線格子高架橋を立体骨組構造にモ デル化し、幾何学的非線形性と材料力学的非線形性を考 慮した弾塑性有限変位動的応答解析法を用いて、3次元 的動的解析を行う。そして、5種類の鋼製ダンパーを用 いて桁間を相互に連結する場合および桁と橋脚を連結す る場合において、それぞれの曲線格子高架橋の動的挙動 を明らかにすることにより鋼製ダンパーの有効性、剛性 による違い、設置方法による違いを比較検討する。

表-1 橋脚と主桁の断面諸元

	$A(m^2)$	$I_x(m^4)$	$I_{\gamma}(m^{4})^{(1)}$
P1	0.4500	0.3798	0.3798
P2	0.4700	0.4329	0.4329
P3	0.4700	0.4329	0.4329
P4	0.4700	0.4329	0.4329
P5	0.4500	0.3798	0.3798
G1	0.2100	0.1005	0.0994
G2	0.4200	0.1609	0.2182
G3	0.2100	0.1005	0.0994

(1) G1,G2,G3の場合は Iz

図-3 支承モデルの水平力 水平変位関係

表-2 LRB 支承の諸元

	Κ1	K2	F ₁
	(MN/m)	(MN/m)	(MN)
P3,P4	49.00	4.90	0.490
P2,P5	36.75	3.68	0.368

2.解析モデル

本研究では、線格子高架橋の3次元非線形挙動を明らかにすることを目的としているため、上部構造、支承部、 橋脚の動的相互作用を考慮できる解析モデルとして図-1 のような3径間連続桁と単径間のアプローチ桁から構成 される曲線格子高架橋を対象とする。橋長は160m、橋 脚間はそれぞれ40mとする。また全体座標系(X-Y-Z座 標系)も図-1に示すように設定する。また曲率半径は100 とする。

2.1 上部構造・下部構造

上部構造は I 形断面の 3 主桁形式(主桁間隔 2.1m、対 傾構間隔 5.0m)とし内側から G1,G2,G3 とする。解析に 際してはこれを図-2 に示すように、断面 2 次モーメント と総重量が等価な鋼断面に換算し、そりねじれの影響を 受けないものとした。橋脚は高さ 20mの長方形箱型断面 を有する鋼製橋脚とした。主桁および橋脚のモデルを表 -1 に示す。

2.2 支承のモデル

鋼製固定支承は、橋脚 P1 の上部、桁 S1 の左端に設置 する。鋼製ローラー支承は橋脚 P2 の上部、桁 S1 の右端 に設置し、縦方向(接線方向)のみに動くものとする。固 定支承、ローラー支承のそれぞれの水平力 水平変位関 係を図-3(a)、図-3(b)に示す。ローラー支承のばね係数 *K*₁は支点反力による摩擦力が最大摩擦力以下の状態の剛 性であり、*K*₂は、支承部に作用する水平力が最大摩擦よ り大きくなって、支承が滑る状態を表す剛性である⁴⁾。

また、桁 S2 を支える橋脚 P2、P3、P4、P5の上部には, 鉛プラグ入り積層ゴム(LRB)支承を設置する。LRB支 承は振動の長周期化による激しい衝撃の緩和、減衰効果 による慣性力の低減、吸収の効果があり、履歴ループが 安定し、エネルギー吸収装置として優れた性能を示す. また、鉛プラグの大きさを変えることで、構造物の大き さ、特性にあわせ、自由に LRB の特性を 設計できる. 図-3(c)、表-2 に LRB 支承の水平力 水平変位関係,特 性を示す。K₁ はゴムと鉛プラグが一体となっている状態

表-3 鋼製ダンパーの諸元

	K1(MN/m)	K2(MN/m)	F1(MN)
D1	40.0	0.098	0.200
D2	98.0	0.098	0.490
D3	220.0	0.098	1.100
D4	328.0	0.098	1.640
D5	394.0	0.098	1.970

の剛性で、 K_2 はゴムの剛性、F1 は鉛プラグの降伏力を 表す。また荷重配分比 $F_1/W = 0.1$ 、剛比 $K_1/K_2 = 10.0$ であ る。

2.3 鋼製ダンパーのモデル

落橋防止構造は、下部構造や支承を破壊し、上下部構 造間に桁かかり長を超えるような変位が生じないように するために桁端部に設ける。落橋防止構造は上部構造と 下部構造を連結する場合、上部構造および下部構造に突 起を設ける場合や2連の上部構造を相互に連結する場合 などがある。本研究では、摩擦履歴型の鋼製ダンパーを 用い、2 連の上部構造を相互に連結する場合、および桁 S1と橋脚P2を連結するモデルを用いて解析を行った。 鋼製ダンパーは、現在では様々な建築構造物に適用され、 地震対策のみならず、風対策や様々な外乱に対する対策 としても採用されている。作用力に対しては、部材の一 部が降伏して塑性変形することで地震エネルギーを吸収 する。今回は5種類の摩擦履歴型の鋼製ダンパーのモデ ルを用いて解析を行った。鋼製ダンパーをバイリニア型 の非線形ばねでモデル化し、その弾性域における初期剛 性 K₁、水平力が作用し降伏荷重に達した後の第2次剛性 *K*₂、および降伏軸力 *F*₁を表-3 に示す。

3. 解析方法

本研究では、まず弾塑性有限変位動的応答解析法を採用した。Newmark 法(=0.25)および修正 Newton-Raphson法を併用し、平面骨組のための有限変位 的応答解析法を3次元立体骨組構造に拡張したものである^{5)、6)}。本研究では鋼製橋脚を有する曲線格子高架橋を 対象とし、上部構造および橋脚をはり柱要素にモデル化 する。146 要素に分割し、それぞれの要素を断面方向に 20分割、部材軸方向5分割するファイバー要素を用いる。 また使用する鋼材の応力 ひずみ関係をバイリニア型に モデル化し、降伏応力235.4MPa、弾性係数200GP、塑性 域のひずみ硬化を0.01とする。構造減衰は質量比例型を 仮定し、1次の水平固有振動モードに対する減衰定数 /=2%を基準とする。入力地震波は図-4に示す兵庫県南部 地震のJR 鷹取駅の記録を使用し、これを橋脚基部の水平 2方向、上下方向に作用させて高架橋全体系の地震応答 解析を行った。

4.解析結果

4.1 ローラー支承変位

大地震動を受ける高架橋の橋梁のローラー支承には大 きな変位が生じる。ローラー支承の変位は橋軸方向の負 方向にある範囲を超えると、桁 S1 が P2 橋脚から落下す る。図-5に5種類の鋼製ダンパーを用いて桁間を連結し た場合、および桁と橋脚を連結した場合のローラー支承 の負方向への最大変位を示す。いずれも外側の桁G3で 記録した値である。落橋防止構造を設置しない場合、ロ ーラー支承最大変位は約40cmに達することから、桁間 および桁と橋脚間に鋼製ダンパーを設置することによっ てローラー支承変位を大きく減少させることができる⁷)。 まず桁間を相互に3本のダンパーで連結した場合を見る と、鋼製ダンパーの剛性が大きくなるに連れてローラー 支承の最大変位は小さくなることが分かる。ダンパーD 5を使用した場合、D1に比べて約6cmローラー支承 最大変位が減少することができる。次に桁と橋脚間を 3 本のダンパーで連結した場合を見ると、桁間を連結した 場合に比べてローラー支承変位は大きく減少することが 分かる。また鋼製ダンパーの剛性が大きくなるに連れて、 ローラー支承最大変位はわずかに減少することが分かる。

4.2 桁間残留変位

大地震動を受ける高架橋の桁間部では大きな相対変位 が生じる。ある範囲超えると車両が通行できない状態と なり、橋梁の使用性能を失うことになる。相対変位が生 じる原因は、ローラー支承の最終位置や橋脚の傾き、支 承の残留変位などが考えられる。図-6に桁間および桁と 橋脚間に鋼製ダンパーを設置した場合の桁間対変位の残 留値を示す。落橋防止構造を設置しない場合、桁間の残 留変位は約20cmであることから、桁間および桁と橋 脚間に鋼製ダンパーを設置することによって桁間の残留 変位を大きく減少させることができる⁷⁾。次に鋼製ダン パーの設置方法による違いを見ると、桁間を相互に3本 の鋼製ダンパーで連結した場合に比べて、桁と橋脚間に 鋼製ダンパーを設置した場合のほうが桁間の残留変位は 大きくなる。これは桁と橋脚間を鋼製ダンパーで連結し た場合、ローラー支承の残留変位に加え、隣接するLR B支承B3の残留変位が桁間を連結した場合に比べ大き くなったためである。またダンパーの剛性による違いを 見ると、桁間を連結した場合および桁と橋脚間を連結し た場合、どちらも鋼製ダンパーの剛性が大きくなるにつ れて、桁間の残留変位は小さくなることが分かる。

4.3 橋脚基部に作用する曲げモーメント

図-7 に桁間をダンパーで連結した場合、図-8 に桁と橋 脚を連結した場合における P1、 P2橋脚の基部に作用 する曲げモーメントと曲率の関係を示す。固定支承を設 置したP1橋脚および落橋防止構造を設置したP2橋脚 基部に着目して考察を行う。まず、図-8の桁間を連結し た場合をみると、鋼製ダンパーD1、D2を用いたモデ ルでは P1および P2橋脚基部では塑性変形は見られず、 弾性範囲内に収まっていることが分かる。しかし、D3、 D4,D5を用いたモデルでは固定支承を設置したP1 橋脚で塑性変形が確認できる。またダンパーの剛性が大 きくなるに連れて、履歴ループも大きくなることが分か る。これは桁間を連結した鋼製ダンパーの降伏軸力が大 きくなったことにより、固定支承B1 により大きな水平 力が作用したためであると考えられる。次に図-7の桁と 橋脚間を連結した場合をみると、いずれのダンパーを用 いたモデルでも P1および P2橋脚基部で塑性変形が確 認できる。これは桁と橋脚を連結した場合、各モデルに おいて鋼製ダンパーの塑性履歴ループが小さいものとな ったため、エネルギー吸収効果が小さくなり、上部構造 に作用する水平力を低減するに至らなかったためである と考えられる。

5.まとめ

本研究ではレベル2地震動を受ける曲線格子高架橋の 落橋を防止するため、5 種類の鋼製ダンパーを用いて桁 間を相互に連結するモデル、および桁と橋脚を連結する

の関係(桁間連結 ×方向)

モデルで、その効果の比較検討を行った。

まず、桁間を相互に連結する場合、鋼製ダンパーの剛 性が高くなるにつれ、ローラー支承変位および桁間の残 留変位は減少することが分かる。しかし本研究で用いた 鋼製ダンパーD3,D4、D5では固定支承B1に作用 する水平力が増大する結果となったため、橋脚P1基部 に塑性変形が確認された。よって、桁間を相互に鋼製ダ ンパーで連結する場合、上部構造の応答を抑制するうえ では有効であるが、高架橋モデルに応じた鋼製ダンパー を設定する必要がある。

次に桁と橋脚を連結する場合では、いずれのモデルに おいても鋼製ダンパーの塑性履歴ループは小さいものと なった。それにより鋼製ダンパーによって負担する上部 構造の水平力が低減し、橋脚や支承部に大きな水平力が 作用したため、橋脚基部に塑性変形が生じる結果となっ た。よって本研究で用いた曲線高架橋モデルにおいて、 桁と橋脚間を連結する場合、上部構造の応答を抑制する うえでは有効であるが、鋼製ダンパーは大きなエネルギ ー吸収効果を発揮しないため支承部や橋脚へ作用する水 平力を低減するに至らなかった。よって、鋼製ダンパー を用いる場合、高架橋モデルに応じてその特性および設 置方法を検討する必要がある。

参考文献

- 1) 日本道路協会:道路橋示方書説 耐震設計編 2002.
- 2) 林川俊郎:橋梁工学、朝倉出版、2000.
- 3) 土木学会:阪神・淡路大震災調査報告書 土木構造物の被害,橋梁,丸善,1995.12
- 4) Robinson, W.H., Lead-rubber hysteretic bearings suitable for protecting structures during earthquakes. Earthquake Engineering Structures, Vol. 10, pp.593-604, 1982.
- 5) Daniel R.J. Hayashikawa T. and Obata, T. :Seismic performance of isolated curved highway viaducts equipped with unseating prevention cable restrainers, Journal of Construction Steel Research, Vol, 63, pp. 237-253, 2007.
- 6) Daniel R.J. and Hayashikawa T :Near-Fault Rupture-Directivity Effects on Orientation of 3D Simply Supported Highway Viaducts, Journal of Construction Steel, Vol.12
- 7) 中川吉紹,林川俊郎,Carlos Mendez: 落橋防止構造 を有する曲線格子高架橋の地震応答性状,土木学会 北海道支部,第65回年次技術発表会 A-41 2009