FRP トラス構造の接合部損傷検出のための振動特性の検討

Joint Defect Detection and Vibration Characteristics of the FRP truss

北見工業大学大学院工学研究科	○学生員	追着昂志	(Takashi Oitsuki)
北見工業大学社会環境工学科	正員	三上修一	(Shuichi Mikami)
北見工業大学社会環境工学科	フェロー	大島俊之	(Toshiyuki Oshima)
北見工業大学社会環境工学科	正員	宮森保紀	(Yasunori Miyamori)
北見工業大学社会環境工学科	正員	山崎智之	(Tomoyuki Yamazaki)

1. はじめに

繊維強化プラスチック(Fiber Reinforced Plastic:FRP)は、 軽量・高強度で塩分による腐食に対する優れた耐性を持 つと言った特徴から、近年橋梁をはじめとする土木構造 物への適用が進められている¹⁾。橋梁への FRP の適用 は国内外で盛んに行われており、国内では既設橋の補 修・補強用途に留まらず、FRP 合成床版の適用、さら には FRP を構造部材とした FRP 歩道橋の施工事例が報 告されている²⁾。

一方で、FRP 橋梁の安全性と信頼性の確保のためへ ルスモニタリングによる損傷評価に関する研究が盛んに 行われており、損傷評価対象の多くは、FRP 材料の層 間剥離や、応力の流れの急激な変化とそれによる局所的 な高い応力集中が発生する接合部である。

山田ら³は光ファイバを使用したモニタリングの研究 として、FGB センサを用いたセンシング結果から、FRP 部材と鋼材との接着界面の剥離損傷を予兆する手法を提 案している。R.A.Votsis ら⁴⁰は、GFRP 接合部の剥離損 傷を対象に、実験的検討および接合部の FEM モデル化 を行い、剥離が構成要素の動的特性(周波数及びモード 形)の差によって検出可能か検討を行っている。これら の研究は、接着接合による接合部の損傷を対象としてい るが、本研究では機械接合された FRP 構造の接合部を 対象に損傷評価を行った。

評価法は、圧電アクチュエータを用いた弾性波の励起 に対する多点計測による圧電型加速度計の出力応答から 算出する損傷位置指数(DI:Damage Indicator)を用いて損 傷評価を行うものである。

対象構造は FRP 製角パイプで作製したトラス模型で あり、接合形式にはリベット接合を採用している。この リベット接合された接合部を損傷評価の対象として、リ ベットを脱落させることで擬似的な損傷を作り出し、実 験的に損傷位置の検出を行った。

DI は損傷前後の振動特性の差(パワースペクトルの差) によって算定されるが、これまで算出結果に影響のある 固有振動数のモード形状に着目した考察は行ってこなか った。そこで本研究では対象構造物の振動を構成する主 体となるモード形状を把握するため、圧電アクチュエー タによる正弦波加振実験を行い、トラス模型の振動を構 成するモードの取得を行った。またトラス模型の FEM モデルを構築し、固有値解析による解析的検討を併せて 行った。

図-1 トラス模型一般図 表-1 加振部・収録部機器一覧

機器	仕様
積層圧電	外形寸法(W×T×H):10×10×20(mm)
アクチュエータ	動作周波数:0~982Hz
ファンクション ジェネレータ	周波数設定範囲:0.01μHz~15MHz
	最大出力電圧:20Vp-p/OPEN、
	$\pm 10 V / OPEN$
ピエゾドライバー	最大出力電圧:150V
圧電	感度:10 mV/(m/s ²)±1 dB
加速度計	応答周波数:5 Hz~4 kHz±0.5 dB
A/D 変換器	分解能:16bit
	チャンネル:差動 8ch

2. 模型概要

模型は、FRP 橋梁適用事例の 1 つである、ものつく り大学 FRP トラス橋 ⁵の主構を参考に作製したもので あり、図-1 に示す 800×375mm(横×高さ)のトラス構造で ある。トラス部材には FRP 製角パイプ(□50mm)を使用 し、ガセットプレート(SUS304 製)と角パイプはブライ ンドリベットにより接合されている。このブラインドリ ベットは低コストと作業性の良さから、歩道橋にも施工 例がある。模型の固定方法は、トラスの4隅の節点を図 -1の側面図に示すようにクランプで1桁のフランジの先 端と挟むことにより固定している。

3. 実験概要

3.1 実験装置

実験装置はアクチュエータ動作部とデータ収録部から 構成される。アクチュエータ動作部はアクチュエータが 振動する時の加振波形を作製するファンクションジェネ レータ、ジェネレータから出力される電圧を増幅させる ピエゾドライバーおよび加振器となる積層圧電アクチュ エータから構成される。データ収録部はノート型パソコ ン、DAQ カード(A/D 変換カード)、シグナルコンディ ショナ、圧電型加速度計から構成される。アクチュエー タ動作部、収録部の機器を表-1 に示す。

3.2 正弦波加振実験

トラス模型の振動モードを把握することを目的に、圧 電アクチュエータを用いてトラス模型を正弦波加振し、 加速度を計測した。加速度計の位置は図-2 に示すよう に、弦材と斜材、ガセットに計 26 点設置し、サンプリ ング周波数 10kHz で 10 秒間の計測を行った。アクチュ エータは計測する振動モードによって設置位置を変化さ せ、模型の加振を行った。

3.3 局部振動加振実験

損傷前後の加速度応答値から DI を算出し損傷評価を 行うため、トラス模型を圧電アクチュエータで局部強制 加振し加速度の収録を行った。模型に導入する人工欠陥 は、トラス部材を接合しているブラインドリベットをド リルで取り外すことで導入した。

本研究では2つの損傷ケースについて損傷評価を行い、 全てのリベットが締結した状態を健全状態(D0)、図-3 で 示す CH1 の隣の丸で囲んだ表面のリベットを6本脱落 させた状態を損傷ケース1の損傷状態(D6)、CH4の隣 の丸で囲んだ表面のリベットを6本脱落させた状態を損 傷ケース2の損傷状態(D6)と定義する。

アクチュエータを中央上弦材の中央に、加速度計を損 傷を導入するガセットを囲むように4点設置し実験を行 った(図-3)。アクチュエータによる加振法はスタート周 波数 1Hz、ストップ周波数 700Hz、加振時間 10 秒の SWEEP 加振であり、加振方向は模型設置面に対して垂 直方向である。加振・計測機器は正弦波加振実験と同じ ものを使用し、サンプリング周波数 10kHz で 12 秒間の 計測を行った。

4. FEM モデル

正弦波振動実験で得られた振動モードとの比較のため、 汎用構造解析プログラムである MARC/MENTAT を用い て3次元 FEM でモデル化を行った。図-4 は FEM モデ ル図であり、FRP 各パイプとガセットプレートを8節 点ソリッド要素により分けてモデル化した。全体モデル の節点数は10316、要素数は4772 となっている。

リベットによるガセットプレートと角パイプの接合状 態は、リベットの剛性を与えた3方向(X、Y、Z軸)のバ ネ要素によりモデル化し、回転軸は固定とした。バネ要 素はリベットが挿入される下穴と同じ位置272箇所にバ ネ要素を設置した。

材料定数の設定では、FRP は直交異方性材料である ため部材毎に座標系を設定し、長さ方向を主軸としてそ の直角方向とで材料定数をそれぞれ定義した。解析で使 用した材料定数を表-2 に示す。

図-4 FEM モデル 表-2 材料定数

	部材軸方向	部材直角方向	
弹性係数[N/m ²]	2.35E10	1.01E10	
せん断弾性係[N/m ²]	5.8E9		
ポアソン比	0.24		
質量密度[kg/m ³]	1890		

5. トラス模型の固有モード

正弦波加振実験の前にトラス模型の固有振動数を探索 するため、模型を複数の加振位置で SWEEP 加振(1~ 700Hz)し振動計測を行い、計測結果に対して FFT を施 しパワースペクトルから固有振動数と考えられる卓越振 動数を抽出した。そしてこの固有振動数でトラス模型の 正弦波加振実験を行い、収録された基準点の実測加速度 波形の最大振幅とその他の測定点の位相関係から振動モ ードを作成した。アクチュエータの SWEEP 加振周波数 を 700Hz までに設定したため、対象となる振動モード は 700Hz までのものとした。SWEEP 加振した際に得ら れたパワースペクトルの例を図-5 に示す。

実験で得られた振動モードと FEM モデルによる固有

(1)

値解析結果から、モード形状が一致したものを図-6 に 示す。図-6 の次数は実験で把握したモードの順序となっている。

実験値と解析値を比較すると3次以降のモードで固有 振動数の差が大きくなっている。このような差が見られ る原因としては、リベットによる接合状態をバネ要素で 簡易的にモデル化している点、またガセットと角パイプ の接触条件を設定していない点などが挙げられ、細部ま でモデル化できていないことが問題であると思われる。 しかし、実験的に取得した振動モードは解析的にも現れ ており、取得したモードを基に損傷評価結果の検討を行 っていく。

6. 損傷位置指数の算出法⁶⁾

DI の算出手順を以下に示す。関数*G_i(f)*は周波数 *f*におけるチャンネル番号 *i* で測定されたパワースペクトルの大きさを示す。そして、健全状態と損傷状態のスペクトルの差(絶対値)で損傷による変化の大きさを定義する(式(1))。

 $D_i(f) = |G_i(f) - G_i^*(f)|$

 $G_i(f)$ は健全状態、 $G_i^*(f)$ は損傷状態におけるスペクトルの大きさを表す。スペクトルがそれぞれの測定位置nに対して f_i から f_m までの周波数で計算されるとき、損傷による変化を表わすマトリクス[D]は式(2)のように定式化することができる。

	$D_1(f_1)$	$D_1(f_2)$	 $D_1(f_m)$		
	$D_2(f_1)$	$D_2(f_2)$	 $D_2(f_m)$		
P	$D_3(f_1)$	$D_{3}(f_{2})$	 $D_3(f_m)$		(0)
D =	$D_4(f_1)$	$D_4(f_2)$	 $D_4(f_m)$	(2	(2)
	.	•			
	$D_n(f_1)$	$D_n(f_2)$	 $D_n(f_m)$		

n は測定点の数(チャンネル数)、m はスペクトルのデ ータ数を表わす。マトリクス[D]における列の要素は同 じ周波数における異なった測定チャンネルのスペクトル を表わす。

次にこのマトリクス[D]についてマトリクスの周波数 データ毎(列毎)でスペクトルの変化が最も大きいチャン ネルを選定し、この最大値で他のチャンネルのデータを 除することで最大値に対する割合を表すマトリクス[C] 作成する。

そしてマトリクス[D]をチャンネル毎(行毎)に合計し たスペクトルの変化量の合計{TC}と、マトリクス[C]を チャンネル毎に合計した最大値に対する重みの総数 {SC}のスカラ積を損傷の影響度を数値化した損傷位置 指数 Damage Indicator_0(DI_0)と定義する。さらにこの 指数に測定時のノイズや測定誤差の影響を除く処理^のを 施して得られる Damage Indicator_2(DI_2)を用いて損傷 評価を行う。

7. トラス接合部の損傷評価

7.1 損傷ケース1

損傷前後の各センサで測定した応答加速度より得られ たパワースペクトルを図-7 に示す。図-7 の実線は D0 の 健全状態を、破線は D6 の損傷状態を表す。図-9 は DI

図-6 固有振動モード

値を図-3 の CH1~CH4 について比較した結果である。 DI の算出に用いた周波数データは、実験から振動モー ドを取得した 700Hz までとした。図-9 のケース 1 を見 ると、損傷の隣に設置した CH1 の DI よりも、CH2、 CH4 の DI が大きく、損傷位置を正確に判定できていな いことが分かる。図-7 の健全時の各センサのパワース ペクトルに着目すると、CH2、CH4 の 5 次(578.8Hz)と 8 次(660.3Hz)のモードの振動数のスペクトルが CH1 に比 べて大きいことが分かる。これは図-6 の固有モードに 示すように、5 次と 8 次は CH2、CH4 の設置位置の変

平成22年度 土木学会北海道支部 論文報告集 第67号

図-9 DI 算出結果(損傷ケース1、2)

形が大きくなるモードとなっており、CH1 に比べて大 きく変形する。一方で、CH1 では CH2 や CH4 のよう な大きなスペクトルの卓越が見られない。

損傷時のパワースペクトルにおいては、CH2、CH4 の5次、8次のモードの振動数のスペクトルの減少が他 のチャンネルに比べて顕著に表れている。CH1 では2 次(255.8Hz)のモードの振動数の減少が見られるが、CH2 や CH4 のような大きなスペクトルの変化は見られない。

以上より、今回の実験では振動モードの変形が大きい 位置に CH2 と CH4 を設置したため、これらのチャンネ ルの健全時のスペクトル、そして損傷後のスペクトルの 変化量が大きくなったと考えられる。

7.2 損傷ケース2

図-9 に示す DI の算出結果は、損傷ケース1と同じよ うに CH2 と CH4 の DI が大きく、図-8 に示す損傷前後 のパワースペクトルについても CH2、CH4 の 5 次、8 次のモードの振動数のスペクトルの変化量が顕著に見ら れる。DI の算出結果としては、損傷評価に有効な結果 となっている。これは CH4 の設置位置とモードの影響 が大きい部材が一致し、損傷によるスペクトルの変化を 大きく捉えたためであると考えられる。

今回の2つの損傷ケースの結果から、センサ設置位置 の振動モードの影響が DI の算出結果に与える影響は大 きいことが分かった。今後はトラス模型の振動モードの 腹や節の位置を確認した上で、損傷評価に有効なセンサ 配置を検討していく。

8. まとめ

本研究では、リベット接合された FRP トラス模型を 用いて接合部の損傷評価を行うと共に、模型の振動モー ドを実験と数値解析から把握することで、評価結果に対 して振動モードに着目した考察を行った。その結果以下 のような結論が得られた。

実験的に模型の振動を構成するモードを取得することができた。

・固有値解析結果と実測による固有振動数に大きな差が 見られた。これは解析モデルの接合部が簡略化したモデ ルあるためと考えられる。

 ・本研究が提案する損傷評価手法を用いる際には、事前 に評価対象構造の振動モードとセンサ設置位置の関係を 考慮する必要がある。今後は損傷評価に有効なセンサ配 置の検討を行っていく。

参考文献

- 1)土木学会構造工学委員会 FRP 橋梁研究小委員会:FRP 橋梁-技術とその展望-、土木学会、2004.
- 2)土木学会複合構造委員会、FRP 複合橋梁小委員会: FRP 複合橋梁小委員会 小委員会報告、第 3 回 FRP 複合構造・橋梁に関するシンポジウム論文報告書、 pp.1-9、2009.
- 3)山田聖志、中島慎一、吉田安寿、山田聡、小宮巌: FRP 材と鋼材との接着界面の力学特性とその構造ヘル スモニタリング、第3回 FRP 複合構造・橋梁に関す るシンポジウム論文報告書、pp.121-126、2009.
- 4)Renos A.Votsis, Marios K.Chryssanthopoulos: Assessment of debonding in GFRP joints using damage identification techniques, Construction and Building Materials, Vol.23 No.4 pp.1690-1697,2009.
- 5) 増渕文男:大学の実習授業における GFRP トラス橋の 建設、強化プラスチック、Vol.54 No1 pp.29-34、2008.
- 6)S.Beskhyroan, S.Mikami, T.Yamazaki, T.Oshima:Vibration Based Monitoring Technology for FRP Structures, Proc.of The International Colloquium on Application of FRP to Bridges, JSCE, pp.55-62, 2006.