再補修RC部材の部材性能に関する検討

EVALUATION OF DEFORMATION CAPACITY OF RE-REPAIR RC MEMBERS

(Tatsuya Nihei)	達也	仁平	〇正会員	毎道旅客鉄道(株)	北海
(Tadatomo Watanabe)	忠朋	渡辺	正会員	 、コンサルタント(株)	比武
(Yukihiro Tanimura)	幸裕	谷村	正会員)鉄道総合技術研究所	財)
(Masaru Okamoto)	大	岡本	正会員)鉄道総合技術研究所	財)

1. はじめに

著者らはRC部材の補修後の部材性能について検討を行い、 その部材性能は、初期損傷の程度や修復工法によって異なり、 かつ、軸方向鉄筋の座屈の有無が重要な閾値となることを明ら かにしている¹⁾. 補修後, 供用期間内に再び被災する可能性は 否定できないことを考慮すると、補修し、再び被災した構造物 を補修(再補修)した際の部材性能も明らかにする必要がある と考える. そこで、本論文では、実大試験体を用いて、再補修 した部材の部材性能について検討を行った.

2. 再補修 RC 部材の部材性能に関する検討

2.1 実験および検討概要

破壊形態が曲げ破壊形態を有する鉄道橋の RC ラーメン高架 橋の柱をモデル化した試験体(以下,初期損傷試験体)に予め 正負交番載荷実験を行い、損傷を発生させ補修を行った後(以 下,補修試験体),再度,正負交番載荷実験を行い,損傷を発 生させ補修を行った(以下,再補修試験体).これにより,修 復行為(補修,再補修)が部材性能(剛性,変形性能)に及ぼ す影響およびその差異について検討を行った.

2.2 初期損傷試験体の諸元

初期損傷試験体は5体(1-N~5-N)である. 試験体名の第1 項は試験体番号であり、第2項は、試験前に無損傷(N)であ ること示している. なお, 著者らが過去に実施した実験におい て、同一断面諸元であり、かつ同一変位の正負交番載荷を3回 繰返した試験体 0-N と、同一変位の正負交番載荷を1回繰返し た試験体 5-N を,以降の補修部材,再補修部材の変形性能を比 較検討に用いる試験体とする. 図-1 に初期損傷試験体の諸元 を示す. 表-1 に各試験体に用いた鉄筋の材料試験結果および コンクリートの材料試験結果を示す.

2.3 実験結果および考察

a)補修方法,破壊状況および荷重-変位関係

1-N~4-N 試験体の降伏変位(&)は、5-N 試験体の最外縁鉄 筋の降伏ひずみに達した変位 25mm とした. なお、材料諸元が 異なる 0-N 試験体の降伏変位は 26.8mm であった. 初期損傷試 験体の最大変位は、軸方向鉄筋の座屈の有無から判断した.具

初期損傷試験体の諸元(単位mm) 図-1

表-1 鉄筋とコンクリートの材料試験結果							
試	軸方向	句鉄筋	帯鉤	跌筋	コン	ノク	フーチ
験	(D32)		(D16)		リー	ート	ング
体	f _{sy}	Es	f _{sy}	Es	f _c	Ec	f _c
0-N	368	161	409	153	26.9	24.4	25.6
1-N	270	105	277	106	39.7	28.5	36.2
2-N	570	195	511	190	34.7	27.7	32.8
3-N	271	109	264	105	40.6	29.1	42.2
4-N	5/1	198	304	195	43.9	28.4	41.1
5-N	368	161	409	153	31.8	244	340

※f_y:引張降伏強度(N/mm²), f_c: 圧縮強度(N/mm²), E_vEs: ヤング係数(kN/mm²)

体的には、1-N 試験体は軸方向鉄筋の座屈がない変位を最大変 位とし、それ以外の試験体は軸方向鉄筋の座屈が確認される変 位以上を最大変位とした.

補修、再補修に際しては、残留変位が荷重-変位関係に及ぼ す影響を避けるため、水平変位、および水平荷重をゼロに戻し た. また、基部より 870mm の範囲を断面修復材に置き換えた 4RR 以外は,損傷した範囲を可能な限りはつり出した.軸方 向鉄筋の座屈により鉄筋がかぶり位置を越えていた場合や,施 工上, 断面修復材の充填性を確保する必要がある場合等は, 断 面を拡幅することとした.ただし、柱基部から高さ80mmの範 囲は、断面の拡大による曲げ耐力の上昇を避けるために損傷前 の断面と同一の寸法とした.

表-2 に各試験体の最大変位と補修方法を示す.表-3 に材料 試験結果を示す.表-4 に軸方向鉄筋が座屈する損傷を受け, 断面修復材に無収縮モルタル、ひび割れ注入材にセメントグラ

				八交団と前回方は		
順序	イベント	1-N	2-N	3-N	4-N	5-N
1	初期載荷	↓ (38 _y : 75mm)	↓ (68 _y : 150mm)	↓ (68 _y : 150mm)	↓ (68 _y : 150mm)	↓ (68 _y : 200mm)
	(損傷)	ひび割れ・はく離	軸方向鉄筋座屈	軸方向鉄筋座屈	軸方向鉄筋座屈	軸方向鉄筋座屈
2	補修	I-M ひび割れ注入 :セメントグラウト 断面修復 :無修復モルタル	2-M ひび割れ注入 :なし 断面修復 :無収縮モルタル	3-SJ ひび割れ注入 :セメントグラウト, 鋼板巻き立て	4R ひび割れ注入 : エポキシ樹脂 断面修復 : 樹脂モルタル	5-C ひび割れ注入 :セメントグラウト 断面修復 :コンクリート
3	再載荷	↓ (5δ _y : 150mm)	↓ (68 _y : 150mm)	(88 _y : 200mm) (実験終了)	↓ (68, : 150mm)	(7ð _y : 175mm) (実験終了)
	(損傷)	軸方向鉄筋座屈	軸方向鉄筋座屈進行		軸方向鉄筋座屈進行	
4	再補修	 しび割れ注入 :セメントグラウト 断面修復 : 無収縮モルタル 	2-JMM ひび割れ注入 :セメントグラウト 断面修復 :無収縮モルタル		4-RR ひび割れ注入 :エポキシ樹脂 断面修復 :樹脂モルタル※3	
5	再々載荷	(88 _y : 200mm)	(88 _y : 200mm)		(88 _y : 200mm)	

表-2 補修前の最大変位と補修方法

※1:載荷方法は同一変位の正負漸増の1回繰返し載荷 ※2:載荷時の軸方向圧縮度は3.87N/mm²(3138kN) ※3:4RR は基部範囲を全置換

コンクリート,補修材料の材料試験結果 表-3 試験 コンクリート 断面修復材 ひひ割れ注入材 休 f E Ε f E f f 1-M 40.6 29.1 45.5 21.6 2.80 23.3 6.4 1.06 43.9 28.4 2.32 29.5 1-MM 478 177 70 1.11 2-M 34.8 27.7 55.9 20.8 3.67 2-MM 39.7 28.5 53.4 21.4 3.87 33.3 8.0 135 43.1 28.7 67.3 25.2 16.6 0.78 3-SJ 3.64 7.1 4-R 42.4 28.9 33.3 4.8 6.14 49.2 1.7 15.8 4-RR 42.3 29.7 35.1 5.2 6.67 5-C 32.5 28.8 28.7 25.2 2.70 ₩2 ₩2 ₩2 5-N 31.8 24.4 _ _ _ _ ____ _

ウトを用いた補修試験体 2-M, 再補修試験体 1-MM, 2-MM と, 断面修復材に樹脂モルタル, ひび割れ注入材にエポキシ樹脂を 用いた補修試験体 4-R, 再補修試験体 4-RR の損傷の進行状況 を示す.

b)荷重-変位関係

図-2 に各試験体の荷重-変位関係を示す.図は、軸力による 付加曲げモーメントに対する補正を行っている.図-3 に各試験 体の包絡線を示す.図内には、最大荷重と最大荷重時の変位も 示す.復元力曲線は、1-M 以外の軸方向鉄筋が座屈する損傷を 受け補修した試験体は、基準試験体と比較すると逆 S 字型とな る傾向がみられた.これは引張力を負担する軸方向鉄筋が補修 前に座屈し、湾曲していたことに起因していると考えられる. 表-4 補修試験体と再補修試験体の損傷の進行状況

試驗休	38	48	ରେ
1-MM			
外観	はく落 (26y時)		軸方向鉄筋座屈進行
2-M			
外観		はく落	軸方向鉄筋座屈進行
2-MM			
外観		はく洛	軸万同鉄筋坐屈進行
4-R			
外観		はく離	
4-RR			
外観		はく離	
/ i P5/L	1		1

 ^{※1:}f_c: 圧縮強度(Nmm²),f_t: 引張強度(Nmm²),E_c: ヤング係数(kNmm²)
 ※2: データなし

1800 1200 平荷重(kN) 600 0 1457kN, 5δy(125mm) 1-M 1293kN, 5δy(125mm) 1 - MM1336kN, 3δy (75mm) -600 2-M 2-MM × 1494kN. 3δv (75mm) -1200 0-N 1381kN, 4δy (107mm) 5-N 1408kN 5 δ v (125mm) -1800 -200 -100 100 200 水平変位(mm) a) 1-M, 1-MM, 2-M, 2-MM, 0-N および 5-N 試験体 1800 1200 水平荷重(kN) 600 1633kN, 3δy (75mm) 0 3–SJ 1606kN 4δv(100mm 4-R 1633kN, 5 δ y (125mm 1096kN, 4 δ y (75mm) -600 4–RR 5-C 0−N 5−N 1381kN, 4δy (107mr 1408kN, 5δy (125mr -1200 -1800 -100 -200 0 100 200 水平変位(mm)

c) 剛性の検討

表-5 に補修試験体の基準試験体に対する降伏剛性の割合を 示す.降伏剛性とは,降伏変位 1δ_y (水平変位 25mm)時にお ける割線剛性である.

降伏剛性は、ひび割れ注入の有無、断面修復材の相違、損傷 程度、補修、再補修に関わらず、すべての試験体が 5N 試験体 の値を下回った.この原因として、水平荷重を除荷して補修 したため、生じた多くのひび割れは閉じてしまい、すべての ひび割れを閉塞させることが難しかったためであると考 えられる.このことは実構造物に対しても同様であると 考えられ、補修、再補修試験体の剛性の回復は期待でき ないと考えられる.なお、3-SJ が他の試験体よりも大きくな ったのは、鋼板が剛性に寄与したためであると考えられる.

著者らは、補修試験体の初期剛性を算定するモデルを提案している¹⁾.ここでいう、初期剛性とは、補修区間の初期剛性 を、初期損傷試験体の降伏時の荷重と変位から定まる剛性であ り、算定モデルとは、通常の RC 部材と同様に式(1)を用い て低下率を変化させる図4に示すモデルである.本モデルを再 補修試験体に対しても適用し、検討を行った.

$$k_{\rm r} = k_1 \left| \frac{\theta_{\rm max}}{\theta_c} \right|^{-\beta} \tag{1}$$

ここに,

k, :補修,再補修部材の塑性ヒンジ領域の初期剛性

β : 剛性低下率

補修,再補修区間の初期剛性を,初期損傷試験体の降伏時の 荷重と変位から定まる剛性としたのは,補修,再補修部材の荷 重-変位関係が,初期損傷時の荷重-変位関係と異なり部材とし て明確な降伏点が表れないためである.ここで,実験値とは, 初期損傷時の降伏荷重が作用した時の修復試験体の変位であ り,計算値とは,初期損傷時の降伏荷重を用いて,塑性ヒンジ 以外の領域には,塑性ヒンジ上部で降伏曲げモーメントとなる 曲げモーメント分布を仮定した部材の再載荷剛性,塑性ヒンジ 領域には式(1)で定まる剛性を、それぞれ用いて算定した変位である.なお、補修試験体は、剛性低下率 β が0.4~0.5程度で実験値と概ね一致することを把握している¹⁾.

図-5 に、剛性低下率 $\beta \ge 0.2 \sim 0.6 \ge$ 変化させた場合の実験値 と計算値の関係を示す.図より、再補修試験体は、補修試験体 同様に、剛性低下率 β が 0.4 ~ 0.5 程度で実験値と概ね一致する ことがわかった.

d)変形性能に関する検討

著者らは、補修した部材の変形性能を表す指標として、「損 傷度:D」と「補修効果:R」を提案している¹⁾.

損傷度 Dは、M点²の部材角に対する損傷度を表す指標であ る. 初期損傷がない場合は0となり、M点の部材角に相当する 損傷を与えた場合は 1.0、M点以上の部材角の損傷を与えた場 合には 1.0以上となる. 補修効果 Rは、初期損傷試験体に対す る補修試験体の補修効果を表す指標である. 補修試験体の M点が初期損傷試験体 M点以下の場合 1.0 を下回り、補修試験体 は初期損傷試験体以下の変形性能であることを意味するもので ある. なお、補修、再補修試験体は同一変位 1 回繰返しの正負 交番載荷を行っており、最大荷重点の $1\delta_y$ 前の変位($1\theta_y$ 前の部 材角)を補修試験体の M点としている. 両指標を再補修試験 体にも適用し、検討を行った.

$$D = \frac{{}_{N}\theta_{\max} - {}_{N}\theta_{y}}{{}_{N}\theta_{m} - {}_{N}\theta_{y}}$$
(2)

ここに,

D :損傷度

 $_{N}\theta_{max}$:経験した試験体の最大部材角 $_{N}\theta_{m}$:初期損傷試験体のM点の部材角

(本検討では0N試験体のM点の部材角)
 ・初期損傷試験体の除伏部材角

$$R = \frac{{}_{R} \theta_{m} - {}_{N} \theta_{y}}{{}_{N} \theta_{m} - {}_{N} \theta_{y}}$$
(3)

ここに,

- R : 補修効果
- *κθ_m*:補修試験体,再補修試験体のM点の部材角 (最大荷重を経験した1θ_y前の部材角)
- Nθm:初期損傷試験体のM点の部材角 (本検討では0N試験体のM点の部材角)
- $_N \theta_y$:初期損傷試験体の降伏部材角

図-6 に横軸に損傷度 D, 縦軸に補修効果 R としたグラフを 示す.同じ損傷度である, 2M, 2-MM, 3-SJ, 4R, 4-RR を比 較すると, 4-R と 4-RR の補修効果が高いのは,断面修復材が 樹脂モルタルであったため,無収縮モルタルよりも引張強度が 大きく,表-4 に示すように,はく離しにくかったことに起因 すると考えられる.また,4-RR の補修効果は 4-R を上回った.

これは、4RR は基部を樹脂モルタルに全置換したため、より 軸方向鉄筋に樹脂モルタルが付着し、座屈の進行を抑制したこ とによるものと推定される.

図より,損傷度Dが大きくなるにつれて,補修効果Rが小 さくなる傾向がみられた.このことから,補修効果は,補修, 再補修に関わらず,損傷度に依存すると考えられる.すなわち, 再補修試験体の変形性能は,補修試験体同様に,経験した最大 部材角に依存すると考えられる.

3. まとめ

本検討の結果,以下のことが明らかとなった.

- 修復後の修復領域の剛性を評価することによって、修復後の部材の初期剛性を算定した結果、再補修試験体は、補修 試験体同様に、剛性低下率 β が 0.4~0.5 程度で実験値と概 ね一致した.
- 2) 損傷度 D が大きくなるにつれて、補修効果 R が小さくなる 傾向がみられたことから、再補修試験体の変形性能は、補 修試験体同様に、経験した最大部材角に依存すると考えら れる.

参考文献

- 仁平達也,渡辺忠朋,滝本和志,笹谷輝勝,土屋智史,原夏 生,谷村幸裕,岡本大;損傷履歴を考慮した修復部材の性能 評価に関する一考察,土木学会論文集E, Vol.65, No.4, pp.490-507,2009
- (財)鉄道総合技術研究所:鉄道構造物等設計標準・同 解説(耐震設計),丸善,1999.10