遠心力模型実験と2次元極限平衡解析を用いた

岩盤斜面の簡易安定度評価法

Simple evaluation method for rock slope stability with centrifugal model test and 2-D limit equilibrium analysis

恚(Yuki Kusakabe)	部祐基	日下	員	DIE	(独)土木研究所寒地土木研究所(
也(Kinya Miura)	f 均ł	三浦	員	Æ	豊橋技術科学大学
爹(Yoshihiko Ito)	夏 佳彦	伊東	員	Æ	(独)土木研究所寒地土木研究所
(Shin-ya Omote)	真也	表	員	Æ	(独)土木研究所寒地土木研究所

1. まえがき

我が国では、地すべりや岩盤崩壊などの斜面災害が毎 年のように発生しており、土木構造物に多大な被害を生 じさせ、時には人命をも奪っている。特に、北海道の日 本海沿岸には火砕岩が広く分布しており、1996年の一般 国道 229号豊浜トンネルや 1997年の同国道第2白糸トン ネルなど、大規模な岩盤崩落事故の多発地帯となってい る¹⁾。このような岩盤崩落では、背面の亀裂の進展や前 面のオーバーハングの形成、および岩盤の強度劣化など が重要な要因と考えられるが、これらを考慮して岩盤斜 面の安定度を定量的に評価する方法は確立されていない。

本研究では、背面亀裂やオーバーハングの深さ、岩体 の引張強さを指標に岩盤斜面の安定性を簡便かつ定量的 に評価する方法の検討として、岩盤模型に対する遠心力 載荷実験(以下、遠心力模型実験)を実施している。日 下部ほか(2009)²⁾では、過去に提案した遠心力模型実験に よる岩盤斜面の安全率評価法³⁾を、実岩盤斜面に適用して その妥当性を報告した。 今回、これまでの遠心力模型実 験結果をもとに、2次元極限平衡解析による簡易安定度 評価法を考案したので報告する。

2. 対象崩落形態と岩盤斜面および実験条件

本安定度評価法で対象としている崩壊形態は、不連続 面が少なく均質であるが脆さを有する軟岩斜面において、 オーバーハングを有し背面亀裂が進展して比較的大規模 な崩落に発展する形態である。このような岩盤崩落は、 オーバーハングした岩盤の自重や岩盤上部に作用する外 力、背面亀裂内の水圧や水の凍結圧などにより、背面亀 裂先端に引張応力が働いて岩盤の引張強さを超えたとき に生じる。

実験対象としたのは、北海道の5箇所の岩盤斜面である。 表-1に各岩盤斜面の代表的な構成岩石と崩落危険岩体 高さH(最大高さ)、および遠心力模型実験で採用した模 型縮尺を示す。模型縮尺は、遠心力載荷装置に設置可能 な岩盤模型規模(一辺が0.6mの立方体)を目安として設 定している。

遠心力模型実験の実験ケースを表-2に示す。各岩盤 斜面において切欠き高さ H_c 、浸食深さZおよび切欠き面 交角 χ の異なる全23ケースである。ここで、切欠き高さ H_c とは、斜面背面に想定した既存亀裂の位置を示し、斜 面底部に設定した基準面から切欠き先端までの高さを表

表一1 対象岩盤斜面

斜面名	構成岩石	崩落危険 岩体高さ <i>H</i> (m)	模型縮尺 1/n
K斜面	火砕岩	14.7	30
H斜面]]	6.7	15
G斜面]]	13.1	20
T斜面	11	34.7	60
S斜面	11	32.5	60

表-2 遠心力模型実験ケース一覧

1	N	(古 EAN)	切欠き高さ	浸食深さ	切欠き面交角		
	NO.	夫ਆN0.	H_c (m)	$Z(\mathbf{m})$	χ (°)		
	1	K-1	3.90	6.00	0		
	2	K-2	3.00	6.00	0		
	3	K-3	2.10	6.00	0		
	4	K-4	3.00	3.60	0		
	5	K-5	3.00	5.10	0		
	6	6 K-6 3.00 7 K-7 3.00		K-6 3.00 6.00		6.00	15
	7			6.00	45		
	8	H-1	1.80 0.00		0		
	9	H-2 1.80		1.35	0		
	10	H-3	1.80 0.60		0		
	11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.00	0		
	12			1.20 0.00			
	13			0.00	45		
	14			G-1 3.83 3.50		0	
	15			3.50	0		
	16			10.00	67		
	17			10.00	67		
	18			4.39 10.00			
	19			15.00	67		
	20			20.00	67		
	21			0.00	0		
	22			2.00	0		
	23	S-3	3.30	4.00	0		

している。切欠き面交角 χ とは、切欠き面が 2 面になる 場合の交角であり、浸食深さ Z とは、基準面から下部の 岩体を表面から任意の厚さ削り取った長さを示す。

3. 極限平衡解析による岩盤斜面崩壊の解析

用いた極限平衡解析は、岩盤斜面背面に設定した切欠 き先端と崩落時に発生する亀裂面(以下、進展亀裂面) の先端を結ぶ直線の3分の2の位置を中心に、崩落危険岩 体の自重による起動モーメントと、進展亀裂面に生じる 応力による抵抗モーメントのつり合いを解いたものであ る。崩落は、切欠き先端に発生する引張応力が、岩盤斜 面を構成する岩石の引張強さを超えたときに発生するこ とになる。解析に用いる強度定数が引張強さだけの簡易 な解析法である。斜面の安定解析と同様に、安定係数*N*。 を以下のように定義する。

$$N_s = \frac{\gamma H}{\tilde{\sigma}_i} \tag{1}$$

- ここに、Ns: 岩体の崩落に対する安定係数
 - H: 岩体の代表的な高さ (m) (以下、崩落危険 岩体高さ)
 - γ : 単位体積重量 (N/m³)
 - $\tilde{\sigma}_{t}$: 切欠き先端における最大引張応力 (N/m²)

安定係数N_sは無次元であり、形状には依存するが寸法 には依存しない。遠心力場における模型であれば、応力 レベルを再現できるので、遠心力模型実験で得られた安 定係数は実岩盤斜面のそれに等しいと考えることができ る。仮に安定係数の値が既知であれば、安全率F_sを次式 で計算できる。

$$F_s = \frac{\sigma_t}{\tilde{\sigma}_t} = \frac{\sigma_t}{\gamma H} N_s \tag{2}$$

ここに、*σ_t*: 切欠き先端の引張強さ (N/m²)

上式より安定係数*N*_sが大きいほど岩盤斜面の安全率が 大きくなり、安定していることがわかる。

図-1のように危険岩体を直方体でモデル化した単純 な2次元条件では、安定係数Nsが解析的に求められる。 岩盤斜面の安定性をモーメントのつり合いで評価するも のとして、起動モーメントM_dと抵抗モーメントM,を以下 のような式で表し、それらの関係から安定係数を以下の ように定義できる。ただし、ここでは、図-1における 岩盤崩落により新たに発生する進展亀裂面(図中のab 線)の引張応力の分布を図-2に示すように直線的に仮 定して、実際との差を応力集中係数ψで評価している。

$$M_{r} = \frac{1}{6}\tilde{\sigma}_{t}\frac{\tilde{H}_{c}^{2} + \tilde{L}^{2}}{\psi}, \quad M_{d} = \gamma H \times \left[\frac{\tilde{B}^{2}}{2} + \frac{2\tilde{B}\tilde{L}}{3} + \frac{\tilde{H}_{c}L^{2}}{6}\right]$$
(3)

 $M_{r} = M_{d} \tag{4}$

$$N_{s} = \frac{\gamma H}{\tilde{\sigma}_{t}} = \frac{\tilde{H}_{c}^{2} + \tilde{L}^{2}}{\psi(3\tilde{B}^{2} + 4\tilde{B}\tilde{L} + \tilde{H}_{c}\tilde{L}^{2})}$$
(5)

- $\widetilde{B} = B/H, \quad \widetilde{H}_c = H_c/H, \quad \widetilde{L} = L/H$
- ここに、ψ:応力集中係数(次項では形状補正係数)
 - *H、B*: 図-1に示した崩落危険岩体高さと厚さ (m)
 - H_c: 切欠き先端から斜面下部まで鉛直に測った 高さ(以下、切欠き高さ)(m)
 - L:切欠き先端位置を基準にした進展亀裂面が 出現する位置までの水平距離(以下、オー バーハング深さ;図-1および図-3に示 すように、亀裂進展面が山側(図-1)に

図-1 岩盤斜面形状概念図

図-3 解析適用条件概要図

発生する場合は+に、崩落危険岩体側(図 -3)に生じる場合には-になる。)(m)

式中には、崩落危険岩体高さHで正規化した値を用いて 式を単純化している。また、本解析法を適用する岩盤斜 面においては、適用の限界条件がある。図-3に示すよ うにオーバーハング深さLが崩落危険岩体側に発生する場 合は、崩落危険岩体の重心と切欠き先端との水平距離Xが、 オーバーハング深さLの3分の2以上であることが必要であ る。XがLの3分の2以下である場合には、崩落危険岩体の 自重が崩落に対して抵抗するモーメントになって崩落し ない。

オーバーハング深さLが図-1に示すように山側に発生 する場合には、任意のLにおいて形状寸法から求められる 安定係数N,が最小値を示し、それ以降増加に転ずる。安 定係数N,が最小値になるオーバーハング深さLminは、(5)式 右辺のLに関する導関数を0として求められるが、複雑な 式になるのでここでは用いない。この値の求め方として は、オーバーハング深さLを任意に変化させて安定係数N, を計算して最小値になるLminを求める。このオーバーハン

実験No.	崩落加速度 $n_f(g)$	岩盤模型の引張 強さ σ _{tm} (MN/m ²)	岩盤模型の単位 体積重量 $\gamma_m (kN/m^3)$	岩盤模型の崩落 危険岩体高さ <i>H_m(m)</i>	安定係数 <i>N_s</i>	崩落危険 岩体厚さ <i>B</i> (m)	オーバーハ ング深さ <i>L</i> (m)	形状安定 係数 N _{sm}	簡易安 定係数 <i>N_{sa}</i>
K-1	42	0.53	17.64	0.49	0.69	5.90	3.05	0.13	0.44
K-2	33	0.47	17.92	0.49	0.61	5.90	3.05	0.08	0.34
K-3	24	0.47	17.68	0.49	0.43	5.90	3.05	0.04	0.23
K-4	45	0.53	17.58	0.49	0.73	5.90	0.65	0.08	0.46
K-5	56	0.86	19.04	0.49	0.61	5.90	2.15	0.08	0.37
K-6	42	0.55	18.13	0.49	0.68	4.55	3.73	0.12	0.36
K-7	42	0.60	17.65	0.49	0.61	6.18	2.91	0.07	0.33
H-1	68	0.39	17.86	0.45	1.40	1.84	-0.92	1.13	1.95
H-2	53	0.37	17.83	0.45	1.14	1.84	0.43	0.26	0.79
H-3	77	0.35	17.86	0.45	1.76	1.84	-0.32	0.43	1.18
H-4	68	0.32	17.65	0.45	1.68	1.84	-0.92	0.86	1.63
H-5	91	0.33	17.93	0.45	2.21	1.84	-0.92	0.65	1.30
H-6	82	0.43	17.48	0.45	1.49	2.48	-1.24	0.46	0.97
G-1	67	0.33	17.11	0.66	2.28	2.38	2.31	0.49	0.82
G-2	43	0.20	17.17	0.66	2.41	2.38	2.31	0.33	0.60
T-1	55	0.37	17.43	0.58	1.50	12.33	3.83	0.19	0.64
T-2	26	0.37	17.66	0.58	0.71	12.33	3.83	0.11	0.46
T-3	28	0.88	19.05	0.58	0.35	12.33	3.83	0.04	0.27
T-4	52	1.74	22.24	0.58	0.38	12.33	8.83	0.04	0.21
T-5	37	1.54	21.90	0.58	0.30	12.33	13.83	0.04	0.17
S-1	91	0.42	18.28	0.54	2.14	4.59	-2.30	0.75	1.44
S-2	34	0.45	18.06	0.54	0.73	4.59	-0.30	0.19	0.77
S-3	68	1.64	21.88	0.54	0.49	4.59	1.70	0.14	0.52

表-3 崩落加速度と実験後供試体の室内試験結果および各安定係数

グ深さLmin以降に対する安定係数には、最小値の一定値を 用いる。なお、厳密にはオーバーハング深さLが山側にな る場合(+の場合)は、すべてこの条件を考慮する必要 があるが、作業が繁雑になって簡易な評価法にならない ため、実験結果の考察では考慮しない。この条件は、オ ーバーハング深さLを指標とした関係曲線を求めるときの み考慮するものとする。

実際の不整形な岩盤斜面では、上式のように解析的に 安定係数を求めることはできないので、応力集中係数の 値も含めた形で、本研究で採用した遠心力模型実験によ って実験的に求めることになる。次項での解析では、応 力集中係数 ψ が断面形状の影響を強く受けることから形 状補正係数と呼ぶ。

4.実験結果と考察

4.1 実験結果とパラメータの対比

遠心力模型実験より得られた崩落加速度、実験後の岩 盤模型より抜き取ったコアの圧裂引張り試験による引張 強さと単位体積重量を表-3に示す。崩落加速度は、遠 心力載荷装置の有効半径(3.5m)位置の測定加速度を、 模型供試体の重心位置に換算して示した。

遠心力模型実験の岩盤模型崩落時においては、安全率 F_s が1まで低下していて、発生する引張応力は引張強さに 等しい($\tilde{\sigma}_i = \sigma_i$)ので、安定係数 N_s は遠心力模型実験結果よ り以下のように求めることができる。

$$N_s = \frac{n_f \gamma_m H_m}{\sigma_m} \tag{6}$$

ここに、n_f: 遠心力模型実験による崩落加速度 (g)

γm: 岩盤模型の単位体積重量 (N/m³)

H_m:岩盤模型の崩落危険岩体高さ (m)

σ_{tm}:岩盤模型の引張強さ (N/m²)

なお、添え字mはパラメータが模型のものであることを 示す。表-3には、岩盤模型の崩落危険岩体高さ(最大 高さ)とそれを用いて計算した安定係数N_sを示した。

実岩盤斜面に2次元極限平衡解析を適用する方法としては、解析に必要な形状寸法を、岩盤斜面の代表値としては、解茶危険岩体高さHと厚さBには最大値を、切欠き高さH_cには実験条件の値を用いた。オーバーハング深さLについては、実斜面の代表断面図をみると分かるが、進展亀裂面が発生する位置を決定するのが難しい。また、解析適用の条件として示したように、崩落危険岩体の重心と切欠き先端との水平距離Xが、オーバーハング深さLの3分の2以上であることが必要である。そこで、簡易な設定方法として初期値が崩落危険岩体厚さBの1/2を負とした値、浸食深さZがある場合には次の式を用いて求めた。

$$L = -B / 2 + Z \tag{7}$$

安定係数N_sは、(5)式右辺の式を用いて各形状寸法比か ら求めることができる。表-3には、各遠心力模型実験 の形状寸法と安定係数も示した(形状補正係数ψは1.0と する)。形状補正係数ψを1.0とした安定係数を、以下、 形状安定係数N_{sm}と呼ぶ。

4.2 形状補正係数の設定

図-4に安定係数N_sと形状安定係数N_{sm}の関係を示す。 両者には、正の相関が認められるが、形状安定係数の方 が小さく算出されている。形状安定係数が安定係数のほ ぼ下限値を通る直線式は、以下のようになる。

$$N_{s} = 2.5 \cdot N_{sm} = \frac{1}{0.4} N_{sm}$$
 (8)

上式のように係数2.5を(5)式の形状補正係数(応力集中 係数) wに換算すると逆数のw=0.4が得られる。この値を (5)式右辺の式に代入して、岩盤斜面の形状寸法から安定 係数Nが安全側の値として求められる。

形状安定係数が小さく算出された原因は、形状寸法と して用いた岩盤斜面の代表値の取り方に起因すると考え られる。適当な各形状寸法の値を求める方法として、各 値の平均値や最大値の1/3、1/4の値を用いたトライアル計 算により、最も相関の良い組み合わせを求めることが考 えられる。しかし、トライアル計算で求められた形状寸 法の組み合わせには、妥当な値とする明確な根拠がない。 実用的には、2次元極限平衡解析の岩盤斜面への利用法 として、簡易に安定度の目安値を得ることが考えられる。

4.3 簡易安定係数による評価

前述のw=0.4として(5)式を用いる方法でも比較的簡易に 安定度を評価できるが、さらに簡略化して岩盤斜面の安 定度を評価する方法を検討した。各形状寸法と形状安定 係数の関係では、切欠き高さHcは正の比例関係に、崩落 危険岩体厚さBとオーバーハング深さL(オーバーハング 深さが切欠き先端位置より深いと正の値になる)は反比 例の関係にあることが想定できる。そこで、形状から求 める安定係数を簡易な係数N_{sa}(以下、簡易安定係数)と して以下の式のように仮定した。

$$N_{sa} = \frac{\dot{H}_{c}}{\tilde{B} + \tilde{L}}$$
(9)

ここに、N_{sa}: 簡易安定係数

図-5に上式による簡易安定係数と安定係数の関係を 示す。安定係数は簡易形状係数の概ね1~3倍の値になっ ており、簡易安定係数が安全側の値を示していることが 分かる。

なお、ここでは全ての対象斜面で現状のオーバーハン グ深さLの決定が困難であったために(7)式を用いて算出し た。(9)式は、1次式であることから崩落危険岩体高さHで 正規化しない値を用いても同様であり、これに(7)式を代 入すると以下のようになる。

$$N_{sa} = \frac{H_c}{B/2 + Z} \tag{10}$$

さらに浸食深さZが0の場合は、以下のように簡単な式 で表すことができる。

$$N_{sa} = \frac{2H_c}{B} \tag{11}$$

現場条件によっては安定度評価の精度が悪くなること が予想されるが、現状の安定度の目安値として利用でき る可能性があると考える。なお、オーバーハング深さLを 明確に決定できるような岩盤斜面では、その値を用いる のが妥当であろう。

図-4 形状安定係数と安定係数

図-5 簡易安定係数と安定係数

5. まとめ

遠心力模型実験と2次元極限平衡解析を用いて岩盤斜 面の簡易安定度評価法ついて検討した。結果は以下のと おりである。

- 1) 実岩盤斜面に2次元極限平衡解析を適用する方法とし て、安全率を求めるための安定係数 N,の算出法を考 案した。
- 2) さらに安定係数 N を簡便かつ定量的に求める方を考案 した。
- 3) これらの安定係数は、遠心力模型実験結果より求めた 安定係数に対して安全側の値を示す。

参考文献

- 1) 伊東佳彦:北海道における岩盤斜面の調査・対策の現 状, (社)自動車技術会, 自動車技術, Vol.61, No.5, pp.36-41, 2007.
- 2) 日下部祐基, 三浦均也, 伊東佳彦, 石川博之, 表真 也:切欠きを有する岩盤模型を用いた遠心力模型実験 による危険度評価法適用例, 平成 20 年度土木学会北 海道支部 論文報告集, 第65号, C-5, 2009.
- 3) 日下部祐基、石川博之、伊東佳彦、國松博一、三浦均 也、上堂薗四男、只野暁、山本真裕、中田賢:遠心力 模型実験による岩盤斜面の安全率評価法、平成 17 年 度土木学会北海道支部 論文報告集 第62号、2006.