融雪期における高濁度水発生機構と細粒土砂輸送

HIGH SUSPENDED SEDIMENT CONCENTRATION DUE TO SNOWMELT AND TRANSFER OF SUSPENDED SEDIMENT

北見工業大学	○学生員	夏井皓盛	(Kouse	i Na	tsui)	
北見工業大学	正会員	中山恵介	(Keisu	ke N	Jakayama)	
北見工業大学	学生員	大西健史	(Kiyof	umi	Onishi)	
国土交通省	北陸地方整備周	哥 正会員	石田村	哲也	(Tetsuya	Isida)
北海道開発局	正会員	大森未音	(Mio	Om	ori)	

1. はじめに

常呂川は、北海道オホーツク地方を流れる網走管内最 大の流域面積を誇る河川である.流域内に管内最大の人 口(13万人)を持つだけでなく、鮭やマスが遡上し、 上流域では貴重な生物の生息が認められており、環境面 から考えても重要な河川であるといえる.さらに、陸域 における栄養を沿岸域に与える役割を持ち、河口部周辺 ではホタテの養殖が盛んである.市民の生活にも大きな 影響を与えており、周辺市民の水源としての重要な役割 を持っている.しかし、そのような重要な役割を持つ一 方、平成13年9月の洪水時における河口から発生した 濁水・土砂流出によるものと考えられている大量のホタ テの斃死や、平成19年6月の常呂川第一頭首工付近に おける濁水の取水による断水など、社会的に大きなダメ ージを与える可能性が大きい河川であると言える.

前述の事故は、濁水・土砂の発生によるものであるが、 水質環境の面からみて、鮭が遡上する河川であるにもか かわらず大腸菌群数が大きく、決して水質環境が良い河 川とは言えず、改善すべき点が存在する.それらの問題 を解決するためには、河道内における濁水・土砂・水質 環境の流動を把握し再現するだけでなく、それらの発生 源である流域全体を対象とした対策を検討・提案する必 要があると言える.また、寒冷地域に位置する常呂川で は、融雪期における細粒土砂の発生、それによる生態系 への影響が大きいと考えられる.

そこで本研究では、流域における総合的な土砂の把握, 水質環境の維持・改善を目的とし、常呂川で最大の問題 であると考えられている高濁度水の発生要因を検討する ため、融雪モデル^{1),2)}および分布型流出モデルを適用し た.具体的には、土地利用の状態、表層土壌の状態など が数 km 単位で分布していることから、詳細な表層の空 間分布を考慮するため、流域面積 29.3km²、流路 9.7km, 平均河床勾配 1/43 である、常呂川流域の小河川である オロムシ川流域を研究対象とした(図-1).

2. モデル概要

(1)分布型流出モデル

これまでの研究で、物理過程に基づいた分布型流出モ デルが、流域からの流出、細粒分の土砂輸送、および水 質を再現できることが示されている^{3),4),5),6)}. そこで本研

図-1 研究対象流域(オロムシ川)の河道と標 高の関係

究においても、過去の論文で示されたモデルと同様な仕 組みのモデルを作成し、利用することとした.表面流と 河道流にはキネマティック方程式、氾濫流には浅水方程 式、浸透流にはリチャーズの方程式に基づく不飽和浸透 流方程式²⁾を用いた.河道の流れの再現には、山地河川 の再現性が高い Hey の式⁷⁾を利用した.計算に用いた流 域モデルは 100m メッシュ、計算時間間隔は 10 秒間隔 とし、融雪モデルで計算された時間融雪量を与えた.

(2)融雪モデル

融雪を扱う場合,簡単な手法として Degree-hour 法が 挙げられる⁸⁾.しかし,本研究では山地の地形勾配を考 慮した融雪状況を把握するため,地球の自転・公転や地 形勾配を考慮できる融雪モデルを用いることにした.積 雪面における熱収支方程式は以下の式で表わされる.

$$Q_{G} = R - \varepsilon \sigma T_{S}^{4} - H - lE + Q_{B} + Q_{R}$$
(1)

$$R = (1 - ref)S + \varepsilon L$$
 (2)

図-2 アメダス気象観測所(北見)での積雪深の 観測結果と融雪モデルによる積雪深変化のシミュ レーション結果

ここで、 Q_{G} :積雪面が表面および底面から得る正味の エネルギー(融雪に使われるエネルギー),R:入力放 射量, ϵ :積雪の射出率、 σ :ステファン・ボルツマン 定数、 T_{S} :積雪表面温度(K),H:顕熱,IE:潜熱, Q_{B} :積雪底面からの地中伝導熱、 Q_{R} :雨の熱量、S:水 平面日射量、L:下向き大気放射量、ref:積雪面のアル ベードである.

また, H, lEは以下の式で与えられる^{1),2)}.
H =
$$c_P \rho C_H U(T_S - T)$$
 (3)

$$\begin{split} & \mathsf{IE} = \mathsf{I}\rho\mathsf{C}_{\mathsf{E}}\mathsf{U}[\mathsf{q}_{\mathsf{sat}}(\mathsf{T}_{\mathsf{S}}) - \mathsf{q}] \\ & \cong \mathsf{I}\rho\mathsf{C}_{\mathsf{E}}\mathsf{U}[(1 - \mathsf{rh})\mathsf{q}_{\mathsf{sat}}(\mathsf{T}) + \Delta \cdot (\mathsf{T}_{\mathsf{S}} - \mathsf{T})] \quad (4) \end{split}$$

$$\Delta = \frac{dq_{sat}}{dT}$$
(5)

ここで、 c_P :空気の定圧比熱、 ρ :空気密度、 C_H 、 C_E : それぞれ顕熱および潜熱に対するバルグ輸送係数、U: 風速、T:気温(K)、l:水の気化潜熱、 $q_{sat}(T)$ 、 $q_{sat}(T_s)$:それぞれ気温および積雪表面温度に対する飽 和比湿、q:比湿、rh:相対湿度である.本研究での計 算対象期間は無降雨であったため、式(1)において $Q_R = 0$ とした.

ここで $Q_G = 0$ と仮定し T_S について解くと式(6)が得られる(ただし $C_H = C_E$ とした).

$$T_{S} = \frac{R - \varepsilon \sigma T^{4} - l\rho C_{H} U(1 - rh)q_{sat}(T) + Q_{B}}{4\varepsilon \sigma T^{3} + (l\Delta + c_{p})\rho C_{H} U} + T \quad (6)$$

式(6)において $T_{s} < 0^{\circ}$ Cの場合は融雪が起こらず, $T_{s} \ge 0^{\circ}$ Cの場合は融雪が生じる.融雪が生じる場合は $T_{s} = 0^{\circ}$ Cと置き換え式(3),式(4)に代入しH, IEを求める. あとは入力放射量 R が得られれば Q_{G} を求めることがで きる.これにより次の式から融雪深 M_{s} を求めることが できる.

$$M_{\rm S} = Q_{\rm G} / (\rho_{\rm S} \, l_{\rm f}) \tag{7}$$

ここで, ρ_s:雪の密度, l_f:氷の融解熱である.

アメダス気象観測所(北見市)において観測された積 雪深は32cmであり,およそ2日間で消滅した(図-2). 平地において融雪モデルによる積雪深の再現を行ったと ころ,ほぼ一致した再現結果を得ることができた(図-2).そこで本モデルをオロムシ川流域に適用し,積雪 深の空間分布の時間変化を計算した(図-4).山地にお

図-3 オロムシ川河口地点での 2009 年 4 月 29 日から 5 月 4 日までの観測結果とシュミレーション計算結果 (a:SS 濃度の変化, b:流量の変化)

ける融雪のパラメータは、平地におけるものと異なることから、山地での融雪計算は斜面の向きを考慮した入力 放射量 R や、山地の地形による融雪係数を与えて計算 した.また、積雪深は、アメダス観測所(北見)の値を 流域に一様に与えた.

本モデルで与えた計算条件での結果,ほぼ一様に融雪 が進行していたが,東側に傾斜している地域よりも西側 に傾斜している地域のほうが,ほんのわずかだが融雪の 進行が早かった(図-4).これは,傾斜した地域に対す る日射の影響によるものだと推測される.しかし,地形 による融雪量の差がわずかだったのは,流域全体に一様 に気温・風速・アルベードの値を与えたためだと考えら れる.今後,標高差や植生等を考慮したパラメータを与 えた計算を行っていく予定である.

高濁度水の再現計算を行う前に、流量に関するモデル の再現性の検討を行った.融雪の入力は空間分布を考慮 して行い、再現計算は、2009年4月29日から5月4日 における融雪による流量に対して行った(図-3).その 結果、細かな変動については検討の余地があるが、流量 のピークの再現が出来ており、良好な結果を得ることが できた.今後、より再現性を向上するための工夫として は、流域規模に比べてゆっくりとした融雪出水の形態を 示していることから、浸透モデルのパラメータの最適化 を行うことが考えられる.

3. 融雪による高濁度水の再現と検討

前節において、オロムシ川流域における再現性が確認 された分布型流出モデルを用いて、高濁度水発生の再現 計算を行った. SS 濃度の計算には、流域表面からの細 粒土砂の発生量として SS 濃度を与えることにより、そ の地点での流量に応じた土砂量を算出することができる. それらの土砂量がすべて下流端まで運搬されるものと仮 定し、キネマティック方程式を利用して表面および河道 における輸送を計算した.また、本研究では、SS 濃度

図-4 融雪モデルによるオロムシ川流域における積雪深の変化

図-5 オロムシ川での細粒土砂の発生量として流域 に一様に与えた SS 濃度の計算条件と融雪モデルに よる流域中心での積雪深のシミュレーション結果 (a:SS 濃度の計算発生量として流域に一様に与え た SS 濃度の計算条件, b:流域中心での積雪深のシ ミュレーション結果)

が極端に高い場合においても流体の性質は変化しないも のとして計算を行った.

上述のとおり,再現計算には流域表面における発生量 として SS 濃度を与えなくてはならない.しかし,土地 利用状態や表層土壌の状態を考慮した細粒分土砂発生量 に関する現地実験を行っておらず,発生量は未知数であ る.本研究では,観測により下流端での細粒分土砂によ る SS 濃度の測定に成功している.そこで,流域におけ る細粒土砂の発生量は、融雪がほぼ一様に進んでいたという計算結果から、流域表面から一様に発生すると仮定して推定し、下流端で観測された SS 濃度の再現が最も良くなるパターンをみつけ、それを細粒土砂の発生量とすることとした(図-5).本研究では細粒土砂の発生と輸送は SS 濃度として与えたため、粒径による発生量や輸送の違いは評価していない.計算時間間隔は 10 秒間隔で実施した.

オロムシ川流域での積雪深はアメダス観測所(北見) での積雪深の変化と比較すると、流域の中心における積 雪深の変化はかなりゆっくりと進行していたことがわか る(図-2,図-5).これは、アルベードの違い、森林の 存在による風の影響の違いが原因である.SS 濃度の再 現結果をみると、高精度に再現を行うことが出来ている ことがわかる(図-3).空間的に一様にSS 濃度が発生 していたという仮定は妥当である.流域に一様に与えた SS 濃度の発生量をみてみると、4月29日の融雪開始直 後に、1時間ほど1,000,000pmという超高濁度の表面 流が発生していたことが推測される.その他の時間は急 激にその値が減少し、最大でも10,000pm 程度であっ た.

表面流における SS 濃度の発生量の時間変化は,発生 直後から時間に反比例して減少していたことも分かった. この関係が,どの程度の普遍性をもつものであるか,よ り多くの観測データを集め検討してゆく必要がある.ま た,融雪初期における流量がまだ小さく,ピークを迎え る前の段階において高濁度が発生していたことから,超 高濁度水の発生については,融雪期初期に注意して監視 しておく必要があることが分かった.

4. まとめ

- (1) 積雪深とSS 濃度の観測結果から、山地斜面が雪で 覆われている間は雪が土砂の発生を抑制し、融雪が 開始すると表層の土壌をはがし、出水ピーク直前に 高濁度水を発生させる場合があることが分かった.
- (2) 融雪モデルの適用により,対象流域での積雪深変化 を再現することが出来た.
- (3) 適用可能であると判断した融雪モデルを用いて, 2009年4月29日から5月4日までの期間を対象に 分布型流出モデルにより流量の再現計算を行った結 果,良い再現性を示すことが出来た.
- (4) 研究対象とした流域での下流端における SS 濃度の 観測結果から推定した SS 濃度の発生量を与えて分 布型流出モデルを用いて SS 濃度の再現計算を行っ た結果, 十分な再現性を示すことが出来た.

謝辞

本研究を進めるにあたり,網走開発建設部治水課から 観測データを提供して頂きました.ここに感謝の意を記 します.また,河川環境管理財団からの助成を受けて実 施されました.記して感謝の意を表します.

参考文献

1) 近藤純正:水環境の気象学,朝倉書店,1994.
 2) 中山恵介,伊藤哲,藤田睦博,斎藤大作:融雪を考慮

した山地流出モデルに関する研究,土木学会論文集,No.691/II-57, pp.25-41, 2001.

- V'azquez RF, Feyen L, Feyen J, Refsgaard JC, Effect of grid size on effective parameters and model performance of the MIKE-SHE code. Hydrological Processes 16: 355–372., 2002.
- 4) Alam M. J., D. Dutta and K. Nakayama, A catchment based approach of nutrient modelling in a river basin, the 12th International Conference on Integrated Diffuse Pollution Management (IWA DIPCON 2008), 2008.
- 5) Dutta D., Nakayama K. Effects of Spatial Grid Resolution on River Flow and Surface Inundation Simulation by Physically Based Distributed Modeling Approach, Hydrological Processes, in press., 2009.
- 6) Alam Md. J., D. Dutta, K. Nakayama, Modelling Nutrient Dynamics and Transport Process in River Basin: A Case Study – Saru River, Japan, the 7th Eco-Hydraulics, Topic 13
 - Solute and Nutrient Transport and Exchange, no.30, pp.1-10, 2009.
- 7) 長谷川和義:山地河川の形態と流れ,水工学シリーズ, 88-A-8, 1988.
- 8) 山崎剛,田口文明,近藤純正:積雪のある森林小流 域における熱収支の評価,天気,41,pp.121-126, 1994.