穴あきダムの土砂移動特性について

Basic experimental study on sediment transport in rivers with dry

dam

北見工業大学工学部土木開発工学科	学生員	木村 祐輔 (Yusuke Kimura)
北見工業大学工学部社会環境工学科	正会員	渡邊 康玄 (Yasuharu Watanabe)
北見上美大学大学院上学研究科士不開発上学専攻	字王貝	益本孝彦 (Takahiko Masumoto)
独立行政法人 土木研究所寒地土木研究所	正会員	谷瀬 敦 (Atushi Tanise)

1. はじめに

近年全国で集中豪雨・台風の強大化による大規模洪 水の発生が増加傾向にある。そこで、洪水を軽減する ために環境への影響が少ないとされる治水専用穴あき ダムが注目されている。島根県益田川ダム図-1¹⁾をは じめとして全国でも現在施工・計画中の穴あきダムが 増加している。穴あきダムとは河床とほぼ同じ高さに 穴が開いており、通常時では水を貯めない。そのため、 現在既存するダムとは異なり、貯水池内での水環境へ の影響が少ないと言われている。その特徴として、洪 水時においては一定量を放流し、残りは貯水し、洪水 減水期に徐々に下流へ放流する。また常時、貯水をさ せないため、既存ダムでの問題点である土砂の堆積が 穴あきダムにおいて、土砂の移動は不明確である。

そこで本研究では、水路実験により通常時と洪水時 の2パターンを再現し、1次元での土砂堆積の程度を 定量的に明らかする。そして、穴あきダムにおける土 砂移動を把握して防災技術の発展に努めることを目的 とした。

2. 実験概要

(1) 実験条件

実際の河道を模擬するため、長さ 14m,幅 0.07mの 直線水路に図-2、4号珪砂 (d_s =0.765mm)を高さ 10cm になるように敷き詰め、河床勾配 1/100の初期河床を 形成した。なお、実験で使用する穴あきダム模型は開 口部 (2.00 × 2.54cm)とし、想定する水理量や模型寸 法等は、現地の模型実験データ²⁾から相似則を適用し、 算出した。また上流端では一定河床を保つために給砂 区間 50cm とし、常時給砂を行った。

(2) 測定項目

実験時は、想定した流量が流れているかを把握する ため、流量観測を行った。また、ある特定の流量におけ る水路内の土砂の挙動を把握するため、給砂量と排砂 量を測定した。また、写真撮影においては、土砂の堆 積高さや縦断的な位置を特定するために行った。河床 高は、通水前と通水後にポイントゲージを使用し、縦 断方向に 50cm 間隔で計測した。水位の測定は、通水 初期と通水後期にそれぞれ測定した。また実験の水理 条件は、計画されているダムの模型実験結果¹⁾を基に フルード則及び流砂量相似則を適用し、決定した。

図-1 島根県益田川ダム(下流側)

図-2 模型実験水路の様子

(3) 実験方法

実験時に適用するハイドログラフを図-3 に、通水 ケースと通水時間および流量を表-1 にそれぞれ示す。 洪水時を想定した場合を Case1 とし、平水時を想定し た場合を Case2 とした。まず Case1 では洪水時を想 定し、流量 337.7(cm³/s) で定流で 390 分間通水させ た。実験時においてはダムの穴を塞ぎ、想定した水位

図-4 2.5m 地点の時間的堆積変化

表-1 水路実験における各通水ケースと流量

通水ケース	通水時間 (min)	流量 (m^3/s)
Case1	390	337.7
Case2	960	128.8

図-3 実験で使用したハイドログラフ

9cm まで堰き上げさせ、穴を開けた。なおそのときの 時刻を通水開始0分とした。通水開始後は、土砂の挙 動を観察し、土砂堆積・移動が平衡状態になるまで、通 水を続けた。次に平水時を想定した Case2では、流量 128.8(cm³/s)で定流で960分間通水させた。平水時の 初期河床は、洪水時に形成された河床からの変化を調 べるために、Case1で形成された河床を用いた。通水 後、ダム上流での土砂堆積部の洗掘がなくなり、定常

図-5 (a) 洪水時と (b) 平水時における河床高

状態に達したところで通水終了とした。

3. 実験結果

(1) 洪水時を想定した場合 (Case1)

実験は、土砂の挙動を把握するために、堆積が収 束するまで 390 分間通水させた。通水時には流量 337.7(cm³/s)の定常流で通水させた場合、不等流計算 より9cm堰き上がると想定していたが、実験では5.3c mまでしか堰き上がらなかった。土砂の移動による河 床高変化の様子を図-5(a)に、給砂量と流砂量の関係を 図-6(a)に示す。Case1 では、終始ばらつきが見られる

図-6 (a) 洪水時と (b) 平水時における給砂量と掃流砂量

ものの、給砂量が徐々に増加していき一方で、流砂量 が徐々に減少していることが確認できる。この結果か ら、Case1 においては、上流端での給砂量に伴い、堆 砂したと考えられる。詳細な堆砂メカニズムにおいて、 通水開始時刻 40 分に開口部の上流側 2.5m 地点におい て、土砂が堆積しこの堆積が契機となり、流下方向へ 土砂の堆積が活発になり、開口部まで堆積が伝播した。 開口部の上流側 2.5m 地点における土砂挙動の時間経過 を表した様子を図4に示す。写真より、通水時間の経 過とともに、土砂が上流から伝播している様子が確認 できる。また開口部の上流側 0m 地点では通水開始と ともに少量の洗掘が確認できた。これは穴の形状から 起因した吸出しによるものと考えられる。また、開口 部下流側では土砂の洗掘に起因して、、土砂堆積の流下 方向への進行に伴い、開口部が閉塞することが予測さ れたが、現地実験の結果¹⁾と同様に、吸出しにより開口 部下流へと少量ずつ土砂が排出されたものであると考 えられる。

(2) 平常時を想定した場合 (Case2)

Case2においては、土砂移動が安定するまで960分 通水させた。土砂移動による河床の変化を図-5(b)に、 また給砂量と流砂量の関係を図-6(b)に示す。Case2で は、通水開始とともに開口部付近の堆砂肩が一瞬に崩 れ、その後上流に向かって堆砂層が徐々に削られていっ た。また図-6(b)より、流砂量に着目すると、通水開 始2時間までの掃流砂量は、2時間以後の流砂量に比較 して少なくなっていることがわかる。この理由として は、Case1で堆積した土砂が開口部下流側へ流れ、開 口部直下流の洗掘部に堆積したと考えられる。その現 象に起因して時間の経過とともに、洗掘部が埋め戻さ れると河床がフラットに形成され、その後その箇所に 影響することなく流砂量が増加ものであると考えられ

図-7 実験と河床変動計算の河床高の比較

図-8 河床変動計算で得られた時間ごとの河床移動

る。また通水後半では給砂量、掃流砂量ともに一定に なっているが、これは流入土砂と流出土砂がほぼ平衡 状態に達したものであると考えられる。

以上より、実際の河川において、既存ダムと異なり 穴あきダムでは、下流での河床低下やアーマリング等 を防ぐことができると考える。

(3) 一次元河床変動計算での検討

ここでは数値計算ソフト FORTRAN77³⁾を使用し、 現象の時間変化をより詳細に検証することにする。本 研究では一次元河床変動計算を行い、洪水時の土砂の 堆積を再現した。図-7に、Case1における実験で形成 された河床高グラフと数値計算で得られた河床高グラ フを、また図-8に、1、3、5、6.5時間後における数値 計算によって得られた河床高グラフをそれぞれ示す。な お流砂量式は以下の(1)式に示す芦田・道上の式4)を用 いた。一次元河床変動計算結果で得られた河床高グラ フと Case1 における実験で得られた河床高グラフを比 較すると、河床変動計算で得られた河床高は、同通水時 間後に実験で得られた河床高を概ね再現できているこ とが確認できる。しかしながら、図-8より時間変化の 土砂堆積メカニズムと、目視観察による実験での土砂 の堆積メカニズムは異なる結果であった。そのため、河 床変動計算における再現性を確認する必要がある。ま た今後は、平水時を想定した一次元河床変動計算を行 い、Case2 における実験で形成された河床高との比較・ 検討を行うことも課題である。

$$\frac{q_B}{\sqrt{sgd^3}} = 17\tau_\star^{3/2} (1 - \frac{\tau_{*c}}{\tau_\star})(1 - \frac{u_{*c}}{u_*}) \tag{1}$$

4. 結論

(1)Case1 において、土砂単独での開口部閉塞はない ものと考えられる。これは、土砂堆積が開口部直下流に 吸い出されるためである。また洪水時の土砂収支に関 しては、給砂量が掃流砂より多く、そのことに起因して 開口部上流において、土砂が堆積したことがわかった。

(2)Case2 において、平水時の土砂の挙動を把握する ことができた。平水時の土砂収支に関しては、掃流砂 量が給砂量より多く、このことに起因して、土砂が洗 掘し下流側に移動することがわかった。

(3) 一次元河床変動計算では、洪水時の土砂の挙動を 再現できた。今後は、平水時の土砂の挙動を数値計算 で再現可能かどうかを把握する必要性がある。

本研究の実験結果より、実際の河川において、既存ダ ムと異なり穴あきダムでは、下流での河床低下やアー マリング等を防ぐことができると考える。

本研究では、通常時での通水実験で、穴あきダム上 流での水みち形成が確認できた。これにより、本研究 の検証は一次元での河床変動だけだったが、二次元で の検証も必要である。一次元河床変動計算では穴あき ダム上流の堆積部のみだったが、下流側を含め土砂洗 掘の検証も必要である。また本研究では、穴あきダム 模型において開口部が一箇所であったが、今後は実河 川により近づけるため開口部の数を増やし、検証を行 う必要もある。通水ケースにおいては、この実験では 定流であったが、非定流で通水し、より時間的に変化 する土砂の挙動を把握する必要性もある。図-7より、 数値計算では3時間で土砂が堆積し、実験での土砂の 堆積時間より、短期であった。そのため、様々な水理 条件のもとで、より詳細な土砂の堆積メカニズムを検 証することも重要である。

参考文献

- 1) 島根県公式ウェブサイト: 益田川ダム全景写真 http://www.pref.shimane.lg.jp/.
- 2) 谷瀬敦、独立財団法人、寒地土木研究所:穴あきダム実 験概要および結果
- 3) 北海道開発局土木試験所、河川研究室:現場のための水 理学, pp.50~53
- 4) 吉川秀夫 :流砂の水理学、丸善株式会社、pp.118~120