繊維ロープ巻付け補強に関する実験的研究(その2:実験式の提案)

Experimental formula of seismic strengthening method for RC pier used continuous fiber rope

独立行政法人土木研究所寒地土木研究所	OIE	員	三田村浩	(Hiroshi Mitamura)
独立行政法人土木研究所寒地土木研究所	正	員	佐藤 京	(Takashi Sato)
株式会社 高速道路総合技術研究所	正	員	塩畑英俊	(Hidetoshi Shiohata)
北武コンサルタント株式会社	正	員	渡辺忠朋	(Tadatomo Watanabe)
長岡技術科学大学	フュ		丸山久一	(Kyuichi Maruyama)

1. はじめに

既設の鉄筋コンクリート橋脚に対する,新たな補強工 法として,著者らは,連続繊維を用いた新たな補強工法 である繊維ロープ巻付け補強に関する研究を行ってきた ^{1),2}.本稿では,繊維ロープ巻付け補強に関する実験研 究(その1:載荷実験)¹⁾で述べた,10体の供試体の正負 交番載荷試験の実験結果を基に,繊維ロープ巻付け補強 工法の補強効果を定義するとともに,ロープ巻付け補強 工法の補強効果を予測する実験式の提案を行う.

2. 補強効果の定量化

2.1 補強効果の定義

繊維ロープ巻付け補強による補強効果について整理す るために, RC 橋脚の荷重-変位関係包絡線を図-1 のよ うにモデル化した. 図中に示した荷重-変位関係包絡線 モデルの限界点A点からD点を,それぞれ次のように定 義した.

- A点:最外縁の軸方向鉄筋が降伏ひずみに達する荷 重(降伏荷重)点.
- B点:最大荷重に達したと考えられる点.
- C点:耐力が低下し始める点.
- **D点**:降伏荷重(A点の荷重)を維持できる最大変位点.

これらの定義に基づき、実験から得られた荷重-変位 関係包絡線にA点からD点を設定した例として、供試体 No.1 と供試体 No.2 のものを図-2 に示す. 図に示した 荷重-変位関係包絡線は、載荷試験から得られた荷重変 位履歴曲線¹⁾の各載荷ステップ(δ y)の1サイクル目 の荷重時を結んだものである.ここで、降伏荷重点A点 は、軸方向鉄筋の柱基部のひずみの測定値が、材料試験 から得られた降伏ひずみ 2164 μ に達した点として設定 した.また、耐力低下開始点C点は、荷重-変位履歴関 係のピーク荷重が、安定して保持できた最後の載荷ス テップの変位として設定した.

図-2(a)と(b)からわかるように,アラミド繊維ロー プを 25mm 間隔で巻付けた供試体 No.2 は,無補強の供 試体 No.1 に比べて,耐力低下開始点C点の変位が大き く,また,耐力低下開始後の荷重-変位関係の下降勾配 が緩やかであることがわかる.

このことから、繊維ロープ巻付け補強の補強効果とは、耐力低下が開始する変位が大きくなること(C点変位の 増大)と、耐力低下開始後の荷重-変位関係の下降勾配 が緩やかになること(C-D勾配の変化)であると言え る.また,実験結果から,ロープ巻付け補強によっては, 部材の最大曲げ耐力は増加しないことが確認された.全 10体の供試体の荷重-変位関係包絡線から得られたC点 およびD点の荷重と変位を,表-1に示す.

表-1 全供試体の C 点および D 点の荷重と変位

供料体		C点(耐力低下開始点)					D点(降伏耐力を維持できる最大変位点)					〔)				
供訊1体		Pm (kN)🔆	•	δ m (mm)			Pn (kN)			δ n (mm)						
140.	正側	負側	平均	正側	負側	平均	正側	負側	平均	正側	負側	平均				
1	280.94	280.76	280.85	65.3	65.5	65.4	220.40	221.90	221.15	90.3	88.0	89.2				
2	279.41	296.13	287.77	83.7	86.1	84.9	223.50	225.20	224.35	117.3	120.5	118.9				
3	275.36	293.35	284.36	64.6	64.3	64.4	217.60	228.00	222.80	82.7	82.1	82.4				
4	282.14	286.46	284.30	85.0	72.7	78.9	221.40	214.40	217.90	116.4	121.4	118.9				
5	271.12	285.89	278.51	73.1	74.1	73.6	216.10	224.90	220.50	103.9	106.1	105.0				
6	296.05	285.80	290.93	56.0	55.9	55.9	220.63	228.05	224.34	-	-	-				
7	271.80	306.04	288.92	72.9	86.3	79.6	236.88	229.47	233.17	95.6	111.3	103.5				
8	275.19	295.16	285.18	84.9	72.8	78.9	189.94	226.50	208.22	117.2	110.2	113.7				
9	493.01	522.02	507.52	57.9	58.9	58.4	407.70	449.20	428.45	72.4	74.3	73.4				
10	482.19	512.54	497.37	68.1	57.8	62.9	418.50	426.60	422.55	93.1	78.3	85.7				
※Pmは	,荷重-変	で位関係の)最大荷重	まとした.			*Pmは、荷重-変位関係の最大荷重とした。									

表-2 供試体パラメーター覧

		.14		11. 2 M/F	1L) bkr.	11.) bkr.	熊西	長手			配筋					補強方法	去		
供試体	破壊	せん町	EVI (EL	11241	軸方回	句鉄筋	帯鉄筋				巻付け	補強材	115364	ヤング率					
No.	形態	La (mm)	断面幅 B(mm)	断面高 H(mm)	軸方向 鉄筋	pt (%)	帯鉄筋	帯鉄筋 間隔	pw (%)	補強材の種類	補強区間	間隔Sr (mm)	断面積 Ar(mm ²)	51張短さ Tr(KN)	E (kN/mm²)				
1	М	2105	600	600	D25	0.643	D10	100	0.238	無補強	-								
2	М	2105	600	600	D25	0.643	D10	100	0.238	アラミドロープ	1.5 imes Lp	25	11.53	28.48	45.77				
3	MS	2105	600	600	D25	0.643	D10	200	0.119	無補強	-								
4	MS	2105	600	600	D25	0.643	D10	200	0.119	アラミドロープ	柱全高	25	11.53	28.48	45.77				
5	MS	2105	600	600	D25	0.643	D10	200	0.119	アラミドロープ	柱全高	50	11.53	28.48	45.77				
6	S	2105	600	600	D25	0.643	D10	300	0.079	無補強	-								
7	S	2105	600	600	D25	0.643	D10	300	0.079	アラミドロープ	柱全高	25	11.53	28.48	45.77				
8	MS	2105	600	600	D25	0.643	D10	200	0.119	ビニロンロープ	柱全高	25	12.5	6.95	10.57				
9	MS	2105	1200	600	D25	0.643	D10	200	0.059	無補強	-								
10	MS	2105	1200	600	D25	0.643	D10	200	0.059	アラミドロープ	柱全高	25	11.53	28.48	45.77				

3. 定式化の考え方

前節で述べたように、繊維ロープ巻付け補強の補強効 果は、C点およびD点の変位の増大、すなわち、変形性 能の向上にある.したがって、繊維ロープ巻付け補強の 補強効果の評価式の定式化は、補強による変形性能の向 上を表現することよるものとした.

算定式の基本形を式(1),(2)に示す.提案する算定式 では、ロープ巻付け補強後の耐力低下開始点(C点)と、 降伏耐力を維持できる最大変位点(D点)の部材角 θ m、 θ nを,無補強状態におけるC点およびD点の部材角 $n\theta$ m、 $n\theta$ nを基準として、これに補強効果を表す関数(1+ $\alpha_1 \cdot \alpha_2 \cdots \cdot \alpha_N$)を掛け合わせることで表現する.

$$\boldsymbol{\theta}_{m} = \left(1 + \boldsymbol{\alpha}_{1} \cdot \boldsymbol{\alpha}_{2} \cdot \dots \cdot \boldsymbol{\alpha}_{N}\right) \times_{n} \boldsymbol{\theta}_{m} \tag{1}$$

$$\boldsymbol{\theta}_n = \left(1 + \boldsymbol{\alpha}_1 \cdot \boldsymbol{\alpha}_2 \cdot \dots \cdot \boldsymbol{\alpha}_N\right) \times_n \boldsymbol{\theta}_n \tag{2}$$

ここで、補強効果を表す関数($1 + \alpha_1 \cdot \alpha_2 \cdots \alpha_N$) の係数 α_1 , α_2 , … α_N は、補強量や部材寸法、配筋状 態など、補強効果と関係性が見られるパラメータによる 関数として、C 点、D 点それぞれに対して、実験結果を もとに定める.

一方,基準となる無補強状態における部材角 $n \theta m$, $n \theta m$, $n \theta m$, c = 0 については,実験結果と土木学会コンクリート標準 示方書 ^{3),4)}の荷重と変位の算定式により求めた荷重-変位 関係の C 点および D 点を比較した結果,図-3 に示す ように,概ね近い値となったことから,本検討において は,土木学会式の変形性能算定式から得られる部材角を 用いることとした.

4. 定式化

4.1 実験式のパラメータ

本研究における供試体のパラメータ一覧を,表-2 に 示す.本研究で行った載荷試験では,以下の4項目の実 験パラメータに基づき,供試体を製作した.

- ① 柱部の破壊形態と繊維ロープによる補強効果
- ② 断面形状(B/H)と繊維ロープによる補強効果
- ③ 繊維ロープの巻付け間隔による影響
- ④ 繊維ロープの材質による補強効果

これらの実験パラメータを踏まえて、補強効果と関係 性が見られるパラメータを検討した結果、補強効果を表 す関数として、式(3.a)~(3.d)に示す 4 つの係数 α_1 ~ α_4 を設定した.

$$\alpha_1 = f\left(A_r / (S_r \cdot B)\right) \tag{3.a}$$

$$\alpha_2 = f(B) \tag{3.b}$$

$$\alpha_3 = f(E_r) \tag{3.c}$$

$$\alpha_4 = f(p_w/p_t) \tag{3.d}$$

ここに、
$$A_r$$
: ロープの断面積
 S_r : ロープの巻付け間隔
 E_r : ロープのヤング率
 B : 部材の断面幅
 p_t : 部材の引張鉄筋比
 p_r : 部材の帯鉄筋比

4.2 定式化(補強効果を表す関数の設定)

補強効果を表す係数 α_1 から α_4 を,表-1に示した全 供試体の C 点および D 点の実験結果に基づき設定する. 本検討においては、載荷方向の正側と負側で大きな差が 見られなかったため、正側の実験結果を用いて係数の設 定を行った.

各補強供試体について,基準となる無補強供試体に対 する変形性能の増加量 $\Delta \theta_m$ (C 点) または $\Delta \theta_n$ (D 点)を求め、この変形性能の増加量 $\Delta \theta$ と、係数 α_1 か らα4のパラメータの関係をもとに、それぞれの係数を 定める. 図-4 に、変形性能の増加量∠θと、パラメー タの関係を示す.図に示した,変形性能の増加量とパラ メータの関係から、補強後のC点およびD点の変位 θ_{m} , θ_n に対して、係数 $\alpha_1 \sim \alpha_4$ を表す関数を、式(4-b) ~ (4-e),式(5-b)~(5-e)のように設定した.

(1) C 点 (耐力低下開始点)

$$\theta_m = (1 + \alpha_1 \cdot \alpha_2 \cdot \alpha_3 \cdot \alpha_4) \times_n \theta_m \tag{4-a}$$

$$\alpha_1 = 4.12 \times \left(A_r / (S_r \cdot B) \times 100 \right) \tag{4-b}$$

(4-c) $\alpha_2 = 0.11 + 0.89 \times (600/B)$

$$\alpha_3 = 1$$
 (4-d)

$$\alpha_4 = 1.02 - 0.35 \times (p_w/p_t) \tag{4-e}$$

(2) D 点(降伏耐力を維持できる最大変位点)

$$\theta_n = (1 + \alpha_1 \cdot \alpha_2 \cdot \alpha_3 \cdot \alpha_4) \times_n \theta_n$$
(5-a)
$$\alpha_1 = 3.92 \times (A_n / (S_n \cdot B) \times 100)$$
(5-b)

(5-a)

 $\alpha_2 = 0.40 + 0.60 \times (600/B)$ (5-c)

(5-d) $\alpha_3 = 1$

 $\alpha_{4} = 1.26 - 1.42 \times (p_{w}/p_{t})$ (5-e)

係数α1については、比例関係として係数を定めた. これに対して、係数 $\alpha_2 \sim \alpha_3$ に関しては、それぞれの変 数で基準となる状態 (α₂: B=600mm(1:1 供試体), α₃: E= 45.77kN/mm²(アラミド繊維), α_4 : p_w/p_t =0.185(MS 型))で、係数の値が1となるように補正して、係数を 定めた. また, 図-4 の(c), (g)より, 補強材のヤング 率の違いが、変形性能の増加量へほとんど影響しなかっ たことから,式(4-d),(5-d)のように, $\alpha_3=1$ とした.

5. 実験式の精度の検証

5.1 土木学会式による変形性能算定結果

実験結果と、構築した実験式(式(4)、(5))による算 定値を比較することで、実験式の精度を確認する.

まず,基準となる無補強状態での部材角 nθm および nθn の計算結果を示す. 土木学会の変形性能算定式に より算出した,無補強の場合のC点及びD点の部材角を,

表-3 土木学会式による変形性能算定結果

	D点		
$0.021 \cdot k_{w0} \cdot p_{+} + 0.013$	$0.79p_t$	_n θ _m 計質値	nθn 封笆庙
P _W +0.015	+0.100	可异胆	可异但
0.0172	0.6610	0.02769	0.04444
0.0131	0.0010	0.02433	0.04110
0.0144	0.6610	0.02323	0.03998
	$\begin{array}{c} 0.021 \cdot k_{w0} \cdot \\ p_w + 0.013 \\ \hline 0.0172 \\ 0.0151 \\ \hline 0.0144 \\ 0.0141 \end{array}$	C点 0.021・k _{w0} ・ 0.79pt p _w +0.013 +0.153 0.0172 0.6610 0.0151 0.6610 0.0144 0.6610 0.0141 0.6610	C点 0.021・k _{w0} ・ p _w +0.013 0.79p _t +0.153 n θ m 計算値 0.0172 0.6610 0.02769 0.0151 0.6610 0.02435 0.0144 0.6610 0.02323

表-3 にまとめる. 土木学会の変形性能算定式において は, 引張鉄筋比に関する項で,

0.79pt+0.153≧0.78 (6)の条件がある.これに対して、本研究で用いた実験供試 体は、0.79pt+0.153=0.6610 であり、この条件を満た していない.表-3 に示した変形性能の算定結果は、こ の条件を無視して 0.79pt+0.153=0.6610 として算定し た場合の計算値である.

平成21年度 土木学会北海道支部 論文報告集 第66号

	表-4	実験式による変形性能の算定結果	(C 点)
--	-----	-----------------	-------

	耐力低下開始点(C点)										
曲封は	実験値		算定値								
沢政神			係数α	$1 \sim \alpha 4$		学会式	に対して	実験値	こ対して		
110.	$\exp \theta \ {\rm m}$	$\alpha 1$	$\alpha 2$	α3	$\alpha 4$	$\operatorname{cal} \theta \ge 0$	$\begin{array}{c} \exp \theta \; \mathrm{m} / \\ \mathrm{cal} \; \theta \; \mathrm{m} \end{array}$	cal θ m	$exp \theta m/$ cal θm		
1	0.03104	0.000	1.000	1.000	0.890	0.02769	-	0.03104	-		
2	0.03975	0.317	1.000	1.000	0.890	0.03550	1.12	0.03979	1.00		
3	0.03069	0.000	1.000	1.000	0.955	0.02435	-	0.03069	-		
4	0.04040	0.317	1.000	1.000	0.955	0.03171	1.27	0.03997	1.01		
5	0.03472	0.158	1.000	1.000	0.955	0.02803	1.24	0.03533	0.98		
6	0.02660	0.000	1.000	1.000	0.977	0.02323	-	0.02660	-		
7	0.03462	0.317	1.000	1.000	0.977	0.03041	1.14	0.03483	0.99		
8	0.04036	0.343	1.000	1.000	0.955	0.03233	1.25	0.04076	0.99		
9	0.02752	0.000	0.555	1.000	0.988	0.02240	-	0.02752	-		
10	0.03234	0.158	0.555	1.000	0.988	0.02435	1.33	0.02991	1.08		
平均	-	-	-	-	-	-	1.22	-	1.01		

表-5	宝輪式によ	ス変形性能の質定結果	 (D 占
11 0	大切大レバーム	②及川川工1110/开工111/1	. (1) 755

			降伏	耐力を約	推持でき	る最大変位	【点(D点)			
曲封体	実験値		算定値							
沢戸小平			係数α	$1 \sim \alpha 4$		学会式に	こ対して	実験値に	こ対して	
10.	$\exp \theta$ n	$\alpha 1$	$\alpha 2$	α3	$\alpha 4$	$\operatorname{cal} \theta \: \mathbf{n}$	$n \theta n/cal \theta n$	cal θ m	$n \theta n/cal \theta n$	
1	0.04289	0.000	1.000	1.000	0.734	0.04444	-	0.04289	-	
2	0.05573	0.301	1.000	1.000	0.734	0.05428	1.03	0.05238	0.94	
3	0.03930	0.000	1.000	1.000	0.997	0.04110	-	0.03930	-	
4	0.05528	0.301	1.000	1.000	0.997	0.05345	1.03	0.05111	0.92	
5	0.04935	0.151	1.000	1.000	0.997	0.04728	1.04	0.04520	0.92	
6	0.03388	0.000	1.000	1.000	1.086	0.03998	-	0.03388	-	
7	0.04543	0.301	1.000	1.000	1.086	0.05306	0.86	0.04496	0.99	
8	0.05569	0.327	1.000	1.000	0.997	0.05449	1.02	0.05210	0.94	
9	0.03442	0.000	0.700	1.000	1.130	0.03458	-	0.03442	-	
10	0.04420	0.151	0.700	1.000	1.130	0.03869	1.14	0.03852	0.87	
平均	1	-	-	1	-	-	1.02	-	0.93	

は,補強供試体

5.2 実験値と算定値の比較

実験値と算定値の比較を行うことで、構築した算定式 の精度を検討する.

表-4 および表-5 に、耐力低下開始点(C点)と降 伏耐力を維持できる最大変位点(D点)それぞれの、実 験値と式(4-a)および式(5-a)による算定値を示す.表中 には、補強後の変形性能を求める基準となる無補強状態 での部材角_n θ_m , θ_n として、載荷実験における無補強 供試体から得られた実験値を用いて算定した場合を示 した.

表中に示した補強供試体の実験値と算定値の関係を, 図-5 および図-6 に示す. 図中で,無補強状態での部 材角として実験値を用いた場合の結果(黒のプロット) を見ると,実験値と算定値は良く一致している.このこ とから,補強効果を表す式(4-a),(5-a)の係数の設定 が妥当であることがわかる.次に,無補強状態での部材 角として土木学会式による計算値を基準とした場合(赤 のプロット)を見ると,C 点変位について,算定値がや や過小となる傾向が見られるものの,構築した実験式に より,補強後の変形性能を概ね予測できていることがわ かる.

6. まとめ

本稿では,既設コンクリート橋脚に対する新たな補強 工法である,繊維ロープ巻付け補強工法について,実験 結果を基に,本工法の補強効果について整理するととも に,補強効果を予測する実験式の構築を行った.

図-5 実験値と算定値の比較(C点の部材角 θ m)

図-6 実験値と算定値の比較(D点の部材角θn)

本工法の補強効果について、「① 耐力低下が開始す る変位が大きくなるとともに、耐力低下開始後の荷重-変位関係の下降勾配を緩やかになる」こと、「② 最大 耐力は増大しない」ことを踏まえて、実験結果に基づき 補強後の変形性能を予測する算定式を構築した.その結 果、

- a) ロープの巻付け間隔, 躯体の断面幅, 鉄筋比
 等をパラメータとした,補強効果を表す関数
 を用いて,補強後の変形性能を予測する実験
 式を構築した.
- b) 構築した実験式による補強後の変形性能の算 定値と実験値とを比較した結果,構築した実 験式により,補強後の変形性能を予測できる ことが確認された.

参考文献

- 坂口淳一,三田村浩,塩畑英俊,西 弘明,下村 匠: 繊維ロープ巻付け補強に関する実験的研究(その1: 載荷実験),土木学会北海道支部論文報告集,第66号, 2010.2.
- 2) 三田村浩,本間淳史,下村匠,丸山久一:アラミドロ ープを用いた RC 橋脚の鉄筋段落し部のじん性補強に 関する検討,コンクリート工学年次論文集, Vol.30, No.3, pp.1267-1272, 2008.
- 3) 土木学会: 2007 年制定 コンクリート標準示方書 【設計編】, pp.83-86, 2008.3.
- 4) 渡邉忠朋,谷村幸裕,瀧口将志,佐藤 勉:鉄筋コン クリート部材の損傷状況を考慮した変形性能算定手法, 土木学会論文集, No.683/V-52, pp.31-45, 2001.8.