札幌軟石を用いた石造アーチの力学的挙動に関する研究

Study on mechanical behavior of stone arch by Shikotsu welded tuff

北海道大学大学院工学研究科	学生員	清水貴裕 (Takahiro Shimizu)
北海道大学大学院工学研究科	F 会員	林川俊郎 (Toshiro Hayashikawa)
北海道大学大学院工学研究科	正会員	松本高志 (Takashi Matsumoto)
北海道大学大学院工学研究科	正会員	何 興文 (Xingwen He)

1.はじめに

高度化した現代社会の進展とともに、現在は耐久性や 利便性だけでなく、ライフサイクルコストや景観など、 土木構造物に対する要求が高まっている。この流れは橋 梁に対しても例外ではなく、17世紀以降に積極的に建 設された石造アーチ橋はコンクリート橋や鋼橋へと変化 していった。大正末期には約7万橋存在していたとされ る石橋も現在では 3000橋未満程度となり、今後もその 数は減少していくことは確実である^{1),2),3)}。こうした減 少していく流れとは逆行して、近年ではその景観美や歴 史性から、石橋を土木遺産として保存していく流れがあ り、鹿児島の石橋記念公園事業や札幌での創成橋復元事 業などが行われている。

しかし、これらの復元・移設事業は、これまでの石造 橋が石工職人達の知恵と経験を頼りに造られてきたため、 復元・移設事業における、解体・復元実績があまり無い ばかりか、技術情報も少ない実情がある。また石造アー チは単純に石材を重ねて作ったものであるため、石材間 には隙間が生じ、不連続かつ不安定な構造である。

以上より、石工職人の経験からではなく数値に裏付け された設計基準を確立していくために、実構造の組み方 における隙間や、隙間に充填した材料(以後、充填材) が全体挙動に及ぼす影響を、評価できる解析モデルの構 築が必要となっている。そこで、本研究では静的載荷室 内模型実験により隙間や充填材の変化による影響を検討 し、得られた実験値と弾性重心法によって得られた理論 値を比較することで、全体挙動に及ぼす影響を評価する。 また、室内模型は創成橋から構造特性を参照し、円弧ア ーチに使用する石材は札幌軟石を用いることとする。

実験供試体		札幌軟石			
支間長	236.29 cm	一軸圧縮強度	22MPa		
拱矢	38.70 cm	ポアソン比	0.14		
角度	36.3°	ヤング係数	5.6GPa		
半径	199.68 cm	断面二次モーメント	2500cm ⁴		
弧長	252.85cm	寸法(輪石)	10*10*30cm		
寸法 (要石			12.5*14*17*30cm		
236 29cm					

表-1 実験供試体・札幌軟石諸元

図-1 実験供試体寸法

2.実験

2.1 実験供試体

実験供試体寸法と石材として使用した札幌軟石の構 造特性を表-1 に示す。また縮小模型全体像について図-1 に示す。輪石は左右 12 個ずつ使用し、要石は組み立て による誤差を考え、調整できるような寸法のものを使用 した。輪石、要石ともに石目を考慮して設置し、札幌軟 石は十分乾燥させたものを使用した。

2.2 実験方法

既往の研究^{4),5)}では、圧縮強度が 0.2~0.3MPa の耐熱 用発泡スチロールをスパンドレルとして使用し、等分布 荷重載荷実験が行われた。本実験に関しても同様の手法 を用いて実験を行う。計測点はダイヤルゲージ 11 箇所、 ひずみゲージ 37 箇所とし、図-2 のようにひずみゲージ を貼り付け、円弧アーチの全体挙動を確認できるように した。また既往の研究では珪砂の粒径が 2~3mm のも のを充填材として使用しているが、今回は 1~2mm の 粒径がやや小さいものを使用した。粒径を変えたことに よる影響に関しても検討する。

載荷に関しては、0.5tf ずつ載荷していき、8tf まで載 荷を行った。また全体のなましがなくなるまで繰り返し 載荷をし、再現性が確認された後の変位を以下の検討で 示している。実験供試体概要については図-3 に示す。

図-2 ひずみ計測箇所と変位計設置箇所

図-3 実験供試体

2.3 実験結果

珪砂充填下での載荷実験を計 11 回、8tf までの載荷を 行い、計測結果から実験供試体の左右対称性と再現性が 確認された(図-4)。荷重 - 変位曲線では、既往の研究と 今回の珪砂充填下における実験結果に差異が生じ、やや 線形性を持った曲線を得た。既往の研究では、載荷され ることにより石材が硬化することと、非連続なアーチで は輪石間の接触面積が載荷量によって変化することから、 荷重 - 変位曲線が初期載荷時、下に凸の曲線となると考 察しているが、本実験では幾らか改善された。これは実 験供試体作成が既往の研究に引き続き、2 回目というこ ともあり、より精巧な実験供試体を作成できたことと、 特に珪砂の粒径が小さくなったことにより、隙間がより 密になったことが起因していると考える(図-5)。

3.実験と理論値の比較

3.1 理論値

実験値の比較対象として、弾性重心法により理論値を 以下のように導出した。この理論値と実験値比較するこ とで、隙間や充填材の影響を検討していく。

弾性重心法は、1 支点を自由端として、これと弾性重 心 O を I= ∞ 、A= ∞ の剛体で結び、弾性重心に作用する 不静定反力 X₁、X₂、X₃ を算定する(図-6)。3 つの不 静定反力を導出し、これとの力の釣り合いにより両端の 反力を導出し、それにより各断面力を算出する。また計 算は両端固定とし、連続体として導出する。等分布荷重 載荷時の算出された X₁、X₂、X₃ は以下に示す。

$$X_{1} = \frac{p}{12} \frac{6e\{rs - L(r - f)\} - L^{3}}{rs + L(r - f) - 2Le + \frac{I}{Ar^{2}}\{rs + L(r - f)\}}$$
$$X_{2} = \frac{pL}{2}$$
$$X_{3} = \frac{pr}{4s} \{L^{2}\theta_{0} + rs - L(r - f)\}$$

図-6 等分布荷重載荷時の不静定反力算定

荷重 - 変位曲線(比較)

図-5 荷重 - 変位曲線

図-7 実験値と理論値との比較(連続面)

3.2 理論値比較

アーチ端部に近付くほど、輪石下辺部におけるひずみ 値が大きくなることが理論値から確認されたため、実験 でも同様にひずみ値が増加していくかどうか確認した。 実際に実験では、アーチ端部に近付くほど輪石下辺部に おけるひずみ値は大きくなっていくが、アーチ端部周辺 で理論値との変化が確認された(図-7)。

そこで、より詳細にひずみ分布を確認するために、円 弧アーチの端部、1/4 部、中心部の輪石のひずみを計測 し、弾性重心法で導出された理論値との比較検討を行っ ていく(図-8)。また図-8 のように分布した要因を以下の 二点から考察していく。

3.2.1 理論ひずみ分布

図-9 より、アーチに影響する曲げモーメントは中心 部で正、端部で負、また 1/4 部で 0 という分布を示す。 これにより、アーチ中心部では輪石の上辺部が圧縮とな るため、圧縮側の輪石のひずみが端部、1/4 部と比べて 大きく算出される。アーチ端部の理論値は、輪石下辺部 が大きいひずみとなる。実験値でも同様の影響を受けア ーチ中心部では輪石上辺部に大きいひずみが確認された。

3.1.2 構造的要因

以下に構造的要因が影響したと考えられるものに関し て分析していく。まず図-9からアーチ 1/4 部では曲げモ ーメントが0であるので、主に軸力が作用し、理論値の ように輪石の上辺下辺部に問わず、ほぼ一定の値になる と予想していたが、本実験では理論値とは異なる分布が 確認された。これはアーチが非連続であり、隙間を持つ 構造であることが起因していると考えられる。隙間によ って輪石上辺部に比べ、下辺部のほうが力を伝達しやす い構造になっており、これが要因となり、理論値と異な る分布を得たと考えられる。

次にアーチ端部では輪石上辺部が引張になるので、本 来、理論値のようなひずみ分布になると予想できるが、 ほぼ逆の分布が確認された。これは支点と石材との構造 的要因によるものであると考える。本実験における支点 は、アーチがアーチ中心から外に広がるような動きに関 しては拘束出来るように作成している。一方で、アーチ や石材自体が内側に動くことに対しては、付着や拘束が 無いため、自由に動くことに対しては、付着や拘束が 無いため、自由に動くことが出来る。実際に既往の研究 で行われた集中荷重載荷実験でも図-10 のように、輪石 下辺部がアーチ中心側に動いていることが確認できる。 これは曲げモーメントと軸力の影響から、このように生 じたと考えており、この影響が等分布荷重載荷実験でも 生じたと推測できる。

4. まとめ

本研究では石造アーチの輪石間に、珪砂を充填した際 の等分布荷重載荷実験を行った。 また弾性重心法によ る理論値と実験結果を比較し、充填材を用いたことによ るアーチ全体への影響を考察した。以下にまとめを示す。

- 充填材に、より細かく隙間を密にするものを使った
 際、荷重 変位曲線がより線形性を得た。
- 実験値、理論値ともに、端部に近付くほど、ひずみ は大きくなっていくが、一方で、実験値では端部に おいてひずみ値が極端に小さくなることが確認され た。
- 非連続である実験供試体は曲げモーメントや構造的 な影響を強く受けることが確認された。
- アーチ端部の境界条件が、端部のひずみ分布に影響 することが確認された。

今後は本実験で確認された構造的な要因を解決すべく、 珪砂より細かく、より隙間を密に出来る石膏を用いて実 験を行っていく予定である。また境界条件によってひず み分布が変化するため、これについても解決できるよう な実験手法を考えていく。

図-9 理論アーチ断面力図 (横軸:各輪石の中心点) (上:曲げモーメント,下:軸力)

図-10 集中荷重載荷実験で生じた隙間

【参考文献】

- 山尾敏孝他:石造アーチ橋の力学的挙動特性の検討、 構造工学論文集、Vol.55A(2009 年 3 月)
- 2) 長谷場良二他:石造アーチ橋・西田橋の移設復元方 針、土木史研究、第18号、pp351~362.1998年5月
- 3) 山口祐造:拱石橋の設計・施行要領,pp1~41,1994.
- 4) 清水貴裕:札幌軟石を用いた円弧アーチ橋の室内模型実験 北海道大学工学部、平成 19 年度卒業論文
- 5) 清水貴裕他:札幌軟石を用いた円弧アーチ橋の静的 載荷実験、土木学会北海道支部論文報告集 2008