A - 7

コンクリート充填鋼殻剛結部における杭定着部破壊に対する

最適な鋼殻サイズの検証について

Verification of Optimum Steel Box Size to Failure of Insertion Part on Concrete Filled Steel Box

北海道大学工学研究科	学生員	中山耕太 (Kota Nakayama)
北海道大学工学研究科	非会員	Muhammad Aun Bashir
北海道大学工学研究科	正会員	古内 仁 (Hitoshi Furuuchi)
北海道大学工学研究科	フェロー	上田多門 (Tamon Ueda)

1. 背景

近年、鋼材とコンクリートの長所を生かした鋼コンク リート混合構造がよく利用されている。そして、現在、 複合ラーメン橋形式の剛結部として、コンクリート充填 鋼殻という新しい剛結部が提案されている。この構造の 特徴は、鋼とコンクリートの長所を生かし、橋台である 鋼殻内ではずれ止めや鉄筋はなくてもよく、厳しい経済 性の追及と施工期間の短縮への要求,技能労働者の不足 への対策, さらに, 狭い施工空間への対応, 高耐震性能 や長寿命化の要求に応えることができるなどの特徴があ る。しかし、このような構造の施工実績はほとんどなく、 剛結部の設計手法もまだ確立されていない。本研究では、 鋼殻幅と鋼管埋め込み長を変数とし、鋼殻の縮小化・埋 め込み長さの短縮化に伴う支圧破壊の性状を検証すると ともに、最適な鋼殻サイズを提案することを目的とした ものである。図1は、コンクリート充填鋼殻を持つ複合 ラーメン橋を示している。

2. 実験概要

実験に使用した供試体の概要図は、図2.1のとおりで ある。供試体は、鋼板により鋼殻を作成し、鋼殻内はコ ンクリートが充填されている。また、H形鋼を鋼殻と剛 結させ、一体化を計った。H形鋼の端部はボルトにより 反力床と固定されている。載荷試験機には1000kNローゼ ンハウゼンを使用し、静的載荷試験を行った。実験変数 は、鋼管の埋め込み長、鋼殻幅である。それぞれの実験 変数は、鋼管径の比で決められており、具体的な数値に ついては**表 2.1**の通りである。埋め込み長に関しては、 鋼管径比で支圧破壊が予想される 0.6 倍から 1.2 倍へと 変化させ、A シリーズとした。また、鋼殻幅については、 載荷方向の鋼殻幅を鋼管径比で 2 倍から 5 倍へと変化さ せ B シリーズとした。鋼殻幅の最小パラメータは、鋼殻 内に十分な充填コンクリートを確保できることを考慮し、 2 倍とした。鋼殻断面については、A シリーズは正方形断 面なのに対し、B シリーズは長方形断面である。また B シリーズの埋め込み長については、A2 供試体と同等に設 定した。

実験を行う中で、A1,A2,A3供試体に関しては、内側鋼 管と鋼殻挿入部との隙間(以後、これをクリアランスと 呼ぶ)が狭く、鋼管が接触することを避けたことで最大 荷重が確認できなかった。そこでA1,A2,A3供試体に関し ては、実験終了後にクリアランスを拡大し、下側から逆 方向へ再度荷重を加えた。この逆方向へ載荷した供試体 を A11,A22,A33 とし、これらのクリアランスは 20mm であ る。また、他の供試体についてはクリアランス 5mm であ る。

図 2.1 供試体概要図

供試体	埋め込み長 (mm)	鋼殻幅 (mm)	クリアランス (mm)
A1	63.8	342.9	5
A2	97.8	342.9	5
A3	142.8	342.9	5
B1	98.8	228.6	20
B2	98.8	571.5	20
A11	63.8	342.9	20
A22	97.8	342.9	20
A33	142.8	342.9	20

表 2.1 供試体概要 (実験変数)

3. 実験結果

供試体の破壊形式は、すべてにおいて鋼殻内部でのコ ンクリート支圧破壊であった。これは、予想されていた 鋼殻端部でのコンクリートの支圧破壊が、実験中に内側 鋼管下端にて目視によって観察されたこと(写真 3.1 参 照)、また鋼殻外部での鋼管ひずみゲージの値が十分弾 性域内であったことから判定を行った。

図3.1 および3.2 は破壊荷重と実験変数との関係をプロ ットしたものである。支圧破壊の最大荷重は鋼殻幅の影 響は小さく、埋め込み長による影響が強く反映されるも のと考えられる。

図 3.1 供試体破壊時の様子(B1 供試体)

(埋め込み長、クリアランス)

図 3.2 供試体最大荷重(鋼殻幅)

4. 解析概要

4.1 プログラム概要

鋼殻内部の支圧応力分布を得るべく、有限要素解析を行った。使用したプログラムは、当研究室で開発されたコ ンクリート構造用3次元非線形有限要素解析プログラム "CAMUI"¹⁾である。本解析では、鋼材とコンクリート のモデル化は8ガウス点を有する20節点アイソパラメト リックソリッド要素を用い、鋼材要素とコンクリート要 素との間は4ガウス点を有する16節点ボンドリンク要素 を用いて接合する。本解析の解析供試体の形状寸法・境 界条件を図4.1に示す。解析は対称性を利用し1/2モデル で行った。非線形解析手法には修正Newton-Rhapson法を 用いる。収束判定基準には (残差力による残差変位) ²/ (全変位増分)²を使用している。収束判定基準値 に関しては10⁻⁵を採用している。

供試体の使用材料の各諸元を、表4.1および4.2に示す。 コンクリートの引張強度、弾性係数およびポアソン比は、 実測圧縮強度を基に土木学会標準示方書「構造性能照査 編」から求めた。

図 4.1 解析供試体図 (寸法、境界条件)

図 4.1 解析供試体図(構成材料)

圧縮強度(N/mm ²)	19.8
引張強度(N/mm ²)	1.7
ヤング係数(kN/mm ²)	23.6
ポアソン比	0.21

表4.1 コンクリートの諸元

降伏強度(N/mm ²)	ヤング係数(kN/mm ²)	ポアソン比
388.2	213.2	0.29

表 4.2	鋼材の	諸元
表 4.2	鋼材の	話う

4.2 各材料構成則

ひび割れ発生前コンクリート,鋼材の構成モデルにおい ては3次元弾塑性破壊モデルを採用した。コンクリート のひび割れに関しては分散ひび割れ-固定ひび割れモデ ルを採用した。またひび割れはひとつのガウス点に3本ま で考慮している。ひび割れ発生基準には二羽モデル2), 青柳・山田モデル2)をそれぞれ3次元に拡張し使用して いる。ひび割れ一本発生時において構成モデルの適用方 法は、ひび割れ面座標系でひび割れ直交方向、平行方向、 ひび割れ面に沿ったせん断ずれ方向にそれぞれ構成則を 適用する方法とする。ひび割れと直交する方向に ReinhardtのTension-softeningモデル³⁾を用いている。 ひび割れと平行する方向においては, Vecchio & Collins のモデル4)を使用している。ひび割れ面の面内せん断応 力は,ひび割れ面のせん断剛性と,ひび割れの入ってい ないコンクリート部のせん断剛性の平均せん断剛性を使 用する方法5)を用い算出する。せん断伝達応力は李・前 川らによるせん断伝達モデル⁶⁾を簡略化し用いている。

4.3 接合要素

鋼材とコンクリートとの間の摩擦は16節点、4ガウス点 を持つボンドリンク要素により表現されている。また、 要素の厚さは0mmで考えられている。FEM解析で使用 されているせん断応力 ずれ関係は、猪俣らの押し抜き せん断試験結果を用いている。

5. 解析結果

解析の一例として、A1 供試体のみの解析結果を示す。 5.1 荷重 変位曲線

静的載荷試験および解析結果(解析値と名づける。)を 図5.1 に示す。解析値については、最大荷重時の支圧分 布を得ることを目的としているため、ピーク後載荷変位 が約50mmまでの結果となっている。最大荷重については、 実験値が約13kNに対して、解析値は約11kNと若干実験 値の方が大きくなったが、概ね最大荷重との整合性は良 いと考えられる。

5.2 杭軸方向ひずみ

実験では鋼殻内部の内側鋼管にひずみゲージを配置して おり(図 5.2 参照) 載荷方向側に配置したひずみゲー ジを Front Plate Side、また載荷方向に対し逆側に配置 されたひずみゲージを Back Plate Side と名づける。解 析値については、対象要素の y 座標値が同じ2 ガウス点 を平均化し、 z 軸に沿って平面保持を仮定し、鋼管表面 のひずみ値を算出した。各荷重レベルにおける杭軸方向 ひずみ分布を図5.3 に示す。

図 5.2 杭軸方向ひずみ位置

Front Plate Side においては、低い荷重レベルでは概ね傾 向を捉えられていることがわかった。しかし、埋め込み 部先端では圧縮ひずみの実験値が荷重と共に急激に増加 していることがわかった。一方、Back Plate Side におい て、鋼殻端部側では概ね解析値が実験値を精度良く表さ れていることがわかった。しかし、埋め込み先端部では 反対にひずみの実験値がそれほど増加していないため、 解析値と実験値に差が出る傾向が伺えた。今後全ての供 試体に対して解析を行い、解析値と実験値のひずみ分布 差の傾向を把握すると共に、その差を修正していく必要 があると考える。

図 5.4 コンクリート支圧応力分布

次に鋼管上下のコンクリート要素に作用する応力分布を 示す(図5.4参照)。この図は、解析モデル図のyz平面で の応力分布を示しており、最大荷重時のものである。ま た、横軸が埋め込み長さを表し、縦軸が圧縮応力を表し ている。結果として、Back Plate Side の埋め込み部が最 も深い箇所において、最大応力 20N/mm² に達している。 一方 Front Plate Side では、鋼殻表面から約 26mm 程度離れ た位置で、最大応力 15N/mm² に達した。次に、応力分布 の範囲については、Front Plate Side の約 40mm に対して、 Back Plate Side では約 20mm と半分程度であることがわか った。

ただし今回の結果は一例のみであり、今後他の供試体 のデータを蓄積し、支圧分布の傾向を比較・検証する必 要がある。

6. まとめ

 1)本実験でのコンクリート充填鋼殻支圧破壊に対する最 大耐力は、載荷方向の鋼殻幅による影響は少ない。
 2)実験値と解析値に関して、荷重変位曲線は概ね整合性 がある。しかし、杭軸方向の埋め込み先端部ひずみに差 が見られた。今後、全ての供試体に対して解析を行い、 ひずみ分布差の傾向を把握すると共に、差が生じた理由 を検討する必要がある。

3)鋼殻内部におけるコンクリート支圧応力分布を示した。 ただし今回の結果は一例のみであり、今後データを蓄積 し、比較・検証する必要がある。

7. 参考文献

1) 高橋良輔ほか:3 次元非線形有限要素解析による鋼コ ンクリート合成板のせん断挙動シミュレーション,構造 工学論文集, Vol.48A, pp1297-1304, 2002.3

2) 岡村甫,前川宏一:鉄筋コンクリートの非線形解析 と構成則,技法堂出版,1991

3) H. W. Reinhardt, et al.: Tensile tests and Failure Analysis of Concrete, Journal of Structural Engineering

(ASCE), Vol.112/No.11, pp2462-2477, Nov.1986

4) M. P. Collins, et al.: A General Shear Design Method, ACI Structural Journal, pp36-45, Jan.-Feb.1996

5)前川宏一,福浦尚之:議事直交2方向ひび割れを有す る平面RC要素の空間平均化構成モデルの再構築,土木 学会論文集,No.634/V-45,pp157-476,1999.11

6) 李宝禄,前川宏一:接触密度関数に基づくコンクリートひび割れ面の応力伝達構成式,コンクリート工学, Vol26,No.1,pp123-137,1998

7) 江本賢治ほか: 複合ラーメン橋剛結部に関する解析的 検討, コンクリート工学年次論文集, Vol.28, No.2, 2006
8) Muhammad Aun Bashir, et al: Ultimate Capacity of Steel Pile Anchorage in Concrete-Filled Steel Box Connection, Journal of Structural EngineeringVol.56A, 2010