A - 2

箱形断面 CFRP 梁の載荷実験とデジタル画像相関法によるひずみ分布計測

Flexural Load Test and Strain Field Measurement of CFRP Box Beams by Digital Image Correlation

北海道大学大学院工学研究科学生員	真砂 純一 (Junichi Masago)
北海道大学大学院工学研究科正会員	松本 高志 (Takashi Matsumoto)
北海道大学大学院工学研究科学生員	櫻庭 浩樹 (Hiroki sakuraba)
北海道大学大学院工学研究科学生員	木戸 英伍 (Eigo Kido)
北海道大学大学院工学研究科 F 会員	林川 俊郎 (Toshiro Hayashikawa)

1. はじめに

炭素繊維強化ポリマー(Carbon Fiber Reinforced Polymer: CFRP)は、高い強度と剛性を有していることか ら、航空宇宙などの分野だけでなく、土木工学の分野で も、好条件の材料として補修・補強などに使われ始めて いる.しかし、CFRPを主要な部材として使用した構造物 はまだ少ない.CFRPは異方性であり脆性素材であるこ となどから、その挙動の把握は容易ではなく、構造設計 においてはその知見が十分ではない.よって今後、土木 工学の分野で活用していくためにも、CFRPの変形・損傷 の把握をすることが必要であると考えられる¹⁾.

既往の研究では CFRP の矩形の外殻にコンクリートを 充填した梁に曲げ荷重を加え, 強度実験を行ったところ, 載荷点付近で圧縮破壊とみられる破壊形態となった²⁾. こうした実験の脆性的な破壊箇所の特定をするためにも, CFRP の変形・損傷の詳細な観察が必要とされている.

以上の背景から著者らは,軸方向:周方向の繊維配向 が1:1,軸方向:斜め方向の繊維配向が1:1及び軸方向: 斜め方向の繊維配向が1:2の箱形断面 CFRP 梁について 載荷実験を行った³⁾⁴⁾.ひずみゲージと変位計による計 測に加えて,画像解析によるひずみ分布計測を行い,損 傷・破壊過程の詳細な観察を行い,繊維配向が及ぼす影 響を把握することを本研究の目的とする.

2. デジタル画像相関法

本研究では、デジタル画像相関法を用いて画像解析を 行う. デジタル画像相関法とはパターンマッチングを用いて, 2 次元変位場を計測する方法であり,これは画像解析手 法の一つであるテンプレートマッチングを拡張した非接 触の 2 次元変位場解析手法である.つまり,物体表面の 写真を撮るだけで変位場の計測ができる.本研究では, 供試体の表面にランダム状に模様をうち,載荷前と載荷 中に適当な間隔でデジタルカメラによる撮影を行う.そ の後撮影したランダム模様の画像に関して,パターンマ ッチングを用いて,供試体表面上のランダム模様の移動 量を算出する.この作業を複数の点で行うことで,供試 体表面の変位場を求め,変位場から計算により供試体表 面のひずみ分布を求める.

2.1 画像解析プログラムの手順

まず、変形前の画像から図1のような任意の点を中心 としたマスク画像を、変形後の画像から図2のようなマ ッチングを行う領域であるリージョン画像を切り出す. プログラムでは、これら2つの画像を畳み込むことによ り、最大相関係数をもつ点を求め、その点に対する変位 を求める.畳み込みとはある関数を平行移動しながらも うひとつの関数と重ね足し合わせる二項演算であり、離 散値の関数f、gの畳み込みを式で表すと

$$(f^*g)(m) = \sum f(n)g(m-n) \tag{1}$$

となる.

本研究では、リージョン画像とマスク画像で畳み込み をする際に、図3のようにマスク画像を動かすことにより、相関係数を計算し、最大相関点を探す.図1のマスク

図1 マスク画像

```
図2 リージョン画像
```

↓ リージョン画像
↓ マスク画像

図3 マスク画像の移動手順

図4 畳み込みの結果

画像と図2のリージョン画像を畳み込みした結果を図4 に示した.図3のようにマスク画像が512×512ピクセル のリージョン画像を移動したことで,相関が高いことを 示す白い点が四隅に集中していることが分かる.

また、図4で左上の矢印が指している部分が白く濃く なっているのが分かるが、これがこの画像での解析によ リ求められた最大相関点であり、座標は(11,505)であ る.つまり、左に11ピクセル、上に7(512-505)ピクセルの 移動量が求めている.この解析に使われた変形前の画像 である図1の四角で囲われた4点と、変形後の図2の四 角で囲われた4点は似ていることが、目で見ても明らか であるが、この4点の移動からも、解析によって求めら れた移動量が確認できる.このようにして求めた最大相 関点からマスク画像で中心とした点の変位が求められる. この作業を、解析対象画像内の複数の点で行うことによ り、与えた荷重ごとに面全体の変位場を知ることができ る.そして、その変位から面全体のひずみ分布を求める ⁵⁾.

3. 箱形断面 CFRP 梁の載荷実験

3-1. 実験供試体

載荷実験で用いた供試体は軸方向:周方向の繊維配向 が1:1,軸方向:斜め方向の繊維配向が1:1及び軸方向: 斜め方向の繊維配向が1:2の箱形断面 CFRP 梁である. 以下では,供試体をそれぞれL1T1,L1D1,L1D2と称する. L,T,Dはそれぞれ,梁軸に対して配向角0°,配向角90°, 配向角±45°を示す文字であり,繊維比率をそれらの文字 の後に表示している.

供試体は、プレプレグと呼ばれる炭素繊維にエポキシ 樹脂を含浸させたシート状のもの(単層板)を重ねて作成 される.まず、核となる角柱状の心材にプレプレグを巻 きつける.その後、熱硬化処理を施すことで母材であるエ ポキシ樹脂が硬化し、各層は接着される.以上の方法で 供試体は作成された.

3-2. 実験概要

載荷は4点曲げとし、荷重制御により行った.図5に供 試体寸法と載荷条件を示す.図6に示すように,変位計9 点(図中黒矢印1~9),三軸ひずみゲージ6点(図中1 ~6),ひずみゲージ2点(図中7,8)により計測を行っ た.既存の実験結果に基づき²⁾載荷点近傍にひずみ計を配 置し,加えてせん断スパン中央にも配置した.以下,ひず みゲージ貼付面を表面と称する.

また、画像解析はひずみゲージ貼付面とは反対側の面 で、図7に示す灰色部分2箇所(,))を対象領域と して、デジタルカメラにより画像を取得し、デジタル画 像相関法により行った.撮影は0.5tf ごとに載荷を停止し て行った.CFRP 表面は一様な黒色であるため,対象領域 を含んだ供試体側面にスプレーによりランダム模様を付 与した.これにより画像相関を行えるようにした.

3-3. 実験結果

(1) 耐荷力と破壊形状

写真1にL1T1, L1D1及びL1D2の破壊部の拡大写真を 示す.L1T1は3.97tfで載荷板端部直下の上フランジとウ ェブの偶角部で梁軸方向の割れが観察された.最終的に

写真 1 破壊部の拡大写真(裏面), 左上:L1T1, 右 上:L1D1, 下:L1D2.

は,既往の実験²⁾と同様に,載荷板の端部近く(図6赤線) で,圧縮フランジとウェブが破壊した.写真 1-左上に示 すような直線の亀裂がウェブに観察され,最大荷重は 5.03tf であった. L1D1 では,載荷板端部直下の偶角部で梁軸方向の割れ は観察されなかった.最終的には,7.16tf で載荷板の端部 近く(図 6 赤点線)で,写真 1-右上に示すようなウェブの 層間剥離が起こり破壊した.

L1D2 においては、L1T1 と同様に4.09tf で載荷板端部直 下の偶角部で梁軸方向の割れが観察された. 最終的には、 6.59tf で載荷板の端部近く(図6赤線)で、写真1-下に示す ようなウェブの層間剥離が起こり破壊した.

(2) 計測結果

図8に載荷板端部のひずみゲージ3,4の荷重-せん断ひ ずみ関係を示す.L1T1 およびL1D2 は角割れによる剛性 変化が見られる.角割れが観察されなかったL1D1 では 3.99tf 以降,緩やかに増加した.L1T1 のせん断ひずみが L1D1 及びL1D2 に比較して大きく計測されたのは,L1T1 では直交方向のみに繊維を積層しているためと考えられ る.L1D1 とL1D2を比較すると,3.0tf まではL1D2でせん 断ひずみが小さく計測された.しかし,角割れ以降は L1D2 において剛性変化が見られ,せん断ひずみがL1D1 と比較して大きく計測された.また,破壊時のせん断ひ ずみはL1T1,L1D1,L1D2の順に,-9000µ,-6200µ,-5000 µ程度であった.

図9に曲げ支間の上フランジと下フランジのひずみゲ ージ7,8の荷重-梁軸方向ひずみ関係を示す.引張側は全 ての供試体で概ね線形に増加している.圧縮側では, L1T1,L1D2は角割れ以降,増加が鈍化し,破壊時のひず みはそれぞれ1500µ,2500µ程度であった.また,角割れ が観察されなかったL1D1についても,4.47tf以後増加が 鈍化し,破壊時のひずみは2500µ程度であった. (3)考察

45°方向の繊維配向を導入すると耐荷力が増加した. 本実験の範囲では、周方向よりも 45°方向の繊維を用いた方が材料を有効に活用できると言える.しかし、本実験では積層構成が限られているため、より効率的な積層構成を求めるためには、梁軸方向と 45°方向の繊維配向の比率を変化させた供試体を作成し、実験を行う必要がある.

4. 画像解析結果

4-1. L1T1

図10は画像解析により得られた3.97ff時のせん断ひず み分布である. 左右でせん断ひずみの符号は逆で示して いる. 5.03ff で脆性破壊が生じたが,3.97ff において既に

と 共に載荷板の端部直下にせん断ひずみの局所化が 観察できる.また, 部分の局所ひずみの位置は,破壊部 分と同じであった.以上より,局所的なひずみの集中か ら最終的な脆性破壊に至ったものと考えられる. 4-2. L1D1

(1)梁軸,梁周方向ひずみ

図 11, 12 は画像解析により得られた 4.47tf 時の梁軸方 向ひずみ,梁周方向ひずみ分布である.梁軸,梁周方向の ひずみ分布共に,載荷板端部から支点側に 1.5~2cm 離れ た位置に局所ひずみを観察できる.また,梁軸方向,梁周 方向のひずみ分布共に 0~2tf までは解析対象領域全てで 圧縮ひずみだったが, 2.5tf 以降に解析対象領域の下部か

図8 ひずみゲージ3,4の荷重-せん断ひずみ関係

図9 ひずみゲージ 7,8 の荷重-梁軸方向ひずみ関係

図 10 L1T1 のせん断ひずみ分布(3.97tf). 左:図 7 ,右: . 灰色の四角が載荷板接触領域.

図 11 L1D1 の梁軸方向ひずみ分布(4.47tf). 左:図7,右: . 灰色の四角が載荷板接触領域.

ら引張ひずみが観察され、荷重が増加するに連れて引張 ひずみの領域が拡大することが観察できた.4.47tf 時に おいては、の梁軸方向、の梁軸方向、梁周方向ひずみ 分布で解析対象領域の20~30%、の梁周方向ひずみ分 布で解析対象領域の60%で引張ひずみが観察できる. (2)せん断ひずみ

図 13 は画像解析により得られた 4.47tf 時のせん断ひ ずみ分布である., 領域共に白点線で囲まれた部分 に解析領域内で最大のひずみが観察できる.しかし、こ のひずみは破壊に関連しておらず,破壊に関連する局所 的なひずみ集中は観察できなかった.

4-3. L1D2

L1D1 と同様に、梁軸方向、梁周方向のひずみ分布共に 荷重が増加するに連れて解析対象領域の下部において、 引張ひずみの領域が拡大することが観察できた。

図14は画像解析により得られた4.49ff時のせん断ひず み分布である., 領域共に白点線で囲まれた部分に 解析領域内で最大のひずみが観察できる.しかし、L1D1 と同様にこのひずみは破壊に関連しておらず,破壊に関 連する局所的なひずみ集中は観察できなかった.また, L1D1と比較すると大きなひずみが観察できた.

以上のことから,破壊前にL1D2はL1D1と比較すると 耐荷力が小さく,L1D1と同様に層間剥離が起こり破壊す ることが予測できる.

6. まとめ

本研究では,箱形断面 CFRP 梁の載荷実験を行い,画 像解析によりひずみ分布計測を行った.変位とひずみの 計測で,CFRP 梁の変形挙動を把握した.また,ひずみ分 布計測により,積層構成の違いによる破壊形状及び,破 壊に関連する局所的なひずみの集中の把握を図った. L1T1では,解析により得られたせん断ひずみの分布図よ り,載荷板端部直下に破壊に関連する局所ひずみを確認 することができた.L1D1,L1D2においては破壊に関連す る局所ひずみは確認できなかったが,これは層間剥離に よるためと考えられる.

今後は,梁軸方向と 45°方向の繊維比率を変えた供試 体を用いて,同様の実験を実施する予定である.

謝辞

供試体作成と既往の実験データ参照については,東レ (株)と清水建設(株)のご厚意によりなされた.また,本研 究は北海道ガス大学助成制度助成金により一部実施され た.ここに謝意を示す.

参考文献

- FRP 複合橋梁小委員会:小委員会報告,第3回 FRP 複合構造・橋梁に関するシンポジウム,2009.
- 2) 稲田裕他: CFRP を用いた合成セグメントの強度特 性に関する実験的検討、土木学会第62回年次学術講 演会、CS15-009、2007.

図 12 L1D1の梁周方向ひずみ分布(4.47tf). 左:図7 ,右: 灰色の四角が載荷板接触領域.

図 13 L1D1 のせん断ひずみ分布(4.47tf). 左:図7,右: . 灰色の四角が載荷板接触領域.

図 14 L1D2 のせん断ひずみ分布(4.49tf). 左:図7 ,右: .灰色の四角が載荷板接触領域.

- 3) 櫻庭浩樹:45 °方向の繊維配向を有した箱形断面 CFRP 梁の変形挙動の把握, 2010.
- 本戸英伍:曲げ載荷実験における箱形断面 CFRP 梁の 強度・変形特性の把握,2010.
- 松本高志:デジタル画像相関法によるひずみ場計測 と撮影条件の検討,土木学会北海道支部論文報告集, 2008.