有限要素法による RC 梁部材の静載荷実験に関するシミュレーション解析

Simulation Analysis on Static Loading Tests of Reinforced Concrete Beam Members by Finite Element Method

 (株)ドーコン
 ○正会員 関下

 (株)ドーコン
 正会員 小林

 北武コンサルタント(株)
 正会員 宮本

 JIP テクノサイエンス(株)
 正会員 星野

 (株)ファルコン
 坂本

 (株)メイセイ・エンジニアリング
 吉永

○正会員 関下 裕太 (Yuta SEKISHITA)
 正会員 小林 竜太 (Ryuta KOBAYASHI)
 正会員 宮本 真一 (Shinichi MIYAMOTO)
 正会員 星野 淳一 (Junichi HOSHINO)
 坂本 智明 (Tomoaki SAKAMOTO)
 ・グ 吉永 文彦 (Fumihiko YOSHINAGA)

1. はじめに

近年,コンクリート構造物の非線形解析技術の進歩は 目覚しく,それまで困難とされていたせん断破壊挙動や ポストピーク挙動も解析的に評価可能になりつつある. また,汎用構造解析コードの普及や計算機性能の飛躍的 な向上によって,実務レベルにおいても設計あるいは照 査の際の実用的なツールとして利用されるケースも多く なり,今後は更にその利用が増えるものと考えられる.

しかしながら、コンクリート構造物の非線形解析は、 材料構成モデルやその組合せ、非線形解析特有の求解法 や収束計算法等、数値解析結果が多くの因子に影響を受 けるといった問題があり、現時点ではそれを一般化する ことが困難であることから、解析結果等の妥当性評価は 個々の技術者の判断に委ねられているのが現状である.

このような背景より,本検討では,コンクリート構造 物の非線形解析における数値解析精度の現状を把握する ことを目的として,設計実務者による RC 梁部材の静載 荷実験を対象としたシミュレーション解析を実施した. なお、本検討では、市販されている代表的な3つの汎用 構造解析コードを利用して、実験結果を事前に公開しな いブラインド解析として実施することとした.

2. 実験概要

2.1 供試体の概要

図-1には、本解析で対象とした計2体のRC梁供試体の形状寸法および配筋状況を示している.実験供試体は、断面寸法200×400mm、スパン長2600mm、せん断スパン比2.86とした複鉄筋の矩形断面RC梁である. No.1供試体は曲げ引張破壊を想定して断面設計を行い、等曲げ区間にはせん断補強筋を配置しないものとした. 一方、No.2供試体は斜め引張破壊を想定して部材設計を行い、軸方向鉄筋の定着区間を除いてせん断補強筋は 配置しないものとした. 表-1には、供試体の基本諸元 一覧を、表-2には、土木学会コンクリート標準示方書 【設計編】に準拠して算定した設計曲げ耐力、設計せん 断耐力およびせん断余裕度を一覧にして示している.

(b) No.2 供試体(せん断破壊型)

図-1 RC梁供試体の形状寸法および配筋状況

2.2 載荷実験の概要

写真-1 には、静的載荷実験の状況を示している.本 実験では、最大載荷荷重 1,000kN のローゼン・ハウゼン 型の載荷試験機を用いた対称 2 点集中荷重載荷とした. なお、荷重伝達の局所化を回避するために、載荷点およ びローラー支点部には鋼製の載荷板および支持板を配置 した.測定項目は、載荷点荷重、変位(載荷点変位、ス パン中央部変位、支点部変位)およびひずみ(コンクリ ート、主鉄筋、せん断補強筋)とした.また、載荷実験 時には目視によってひび割れの発生や進展状況を確認す るとともに、梁側面に発生したひび割れをトレースした. 表-3,4 には、それぞれコンクリートおよび鉄筋の力 学的特性値を示している.なお、本実験は 2008 年 5 月 26 日に北海道大学工学部において実施されている.

3. 各解析者が適用した解析手法の概要

表-5には、各解析者が適用した解析手法の仕様を一覧にして示している.表より、本検討で用いられた解析 手法の構成は、いずれの解析者も非線形有限要素法によ る平面応力場問題とした取り扱った2次元解析である. 使用した解析コードは、解析者 A は DIANA、解析者 B は MSC.Marc,解析者 C は WCOMD であり、解析対象 はいずれの場合も構造および荷重条件の対称性を考慮し たハーススパンモデルとしてモデル化を行っている.

適用した有限要素タイプは,解析者 A, B はコンクリ ート要素には8節点平面応力要素を,鉄筋要素には埋め 込み鉄筋要素あるいはトラス要素を用いている.埋め込 み鉄筋はコンクリート要素の節点位置を意識することな く配置できる特徴を有しているが,軸力にのみ抵抗する ためトラス要素と等価な有限要素である.一方,解析者 C も8節点平面応力要素を用いているが,鉄筋とコンク リートの特性を重ね合わせた RC 要素を用いているため 鉄筋は直接にモデル化していない.また,コンクリート のひび割れモデルは,いずれの解析者も分散ひび割れモ デルに分類される固定ひび割れモデルを採用している.

なお,境界条件および荷重載荷法は同じであるが,収 束計算法に関しては各解析者で相違が見られる.

表-1 供試体の基本諸元一覧				
供封体	断面寸法	せん断	主鉄筋比	せん断補強
供試件	(mm)	スパン比	(%)	筋比(%)
No.1	200×400	2.86	0.85	0.55
No.2	200 × 400	2.80	1.66	_

表-2 供試体の設計耐力一覧

供試体	設計曲げ耐力	設計せん断耐	せん断余裕度
	Pu(kN)	力 Vu(kN)	$\alpha (=V\!u / Pu)$
No.1	138.2	348.4	2.52
No.2	253.2	127.2	0.50

写真-1 静的載荷実験の状況

表-3 コンクリートの力学的特性値

圧縮強度	引張強度	弾性係数	ポアソンド
(MPa)	(MPa)	(GPa)	
25.7	2.0	25.9	0.2

表-4 鉄筋の力学的特性値

鉄筋径	降伏強度	弾性係数	ポマソン世	
	(MPa)	(GPa)	ハノノンに	
	D10	355.0	179.0	
_	D16	356.0	177.0	0.3
	D22	361.0	187.0	

項目	解析者 A	解析者 B	解析者 C
解析次元	2 次元	2 次元	2 次元
解析手法	非線形有限要素法	非線形有限要素法	非線形有限要素法
解析コード	DIANA	MSC. Marc	WCOMD
解析範囲	ハーフスパン	ハーフスパン	ハーフスパン
要素タイプ	コンクリート:平面応力要素	コンクリート:平面応力要素	平面応力要素
	鉄筋:埋め込み鉄筋要素	鉄筋:トラス要素	(鉄筋コンクリート(RC)要素)
境界条件	対称軸:水平方向変位成分を拘束	対称軸:水平方向変位成分を拘束	対称軸:水平方向変位成分を拘束
	支点部:鉛直方向変位成分を拘束	支点部:鉛直方向変位成分を拘束	支点部:鉛直方向変位成分を拘束
荷重載荷法	強制変位(変位増分法)	強制変位(変位増分法)	強制変位(変位増分法)
ひび割れモデル	分散ひび割れモデル	分散ひび割れモデル	分散ひび割れモデル
	(固定ひび割れモデル)	(固定ひび割れモデル)	(固定ひび割れモデル)
収束計算法	割線剛性法	Newton-Raphson 法	修正 Newton-Raphson 法

表-5 各解析者が適用した解析手法の仕様一覧

3.1 解析者 A の解析モデル

図-2(a)には,解析者 A の要素分割状況を示している. 本モデルの要素サイズは,かぶり厚に相当する 50mm を基準とし,要素形状は縦横比を極力 1.0 に近づけるように配慮した.また,載荷点および支点部には応力集中 による局所的な破壊を防止するために実験時と同様に載 荷板および支持板をモデル化している.但し,載荷板お よび支持板とコンクリート要素間は完全結合を仮定した. なお,これらの条件は他の解析モデルにも共通している.

図-3には、解析者Aが採用したコンクリート要素の 応力-ひずみ関係を示している. 圧縮応力下では、圧縮 ひずみ 3,500 μまでは土木学会コンクリート標準示方書 【設計編】の耐力算定用の関係式を用い、それ以後は線 形的に軟化するモデルを設定した. なお、降伏判定には Drucker-Prager の降伏基準を用いた. 一方、引張応力下 では、土木学会コンクリート標準示方書【設計編】にお ける引張破壊エネルギーを考慮した2直線モデルの引張 軟化特性を適用した. なお、ひび割れ発生後のせん断剛 性は初期せん断剛性の1%に低減させるモデルとした.

図-5 には、鉄筋要素に用いた応力-ひずみ関係を示している.鉄筋には塑性硬化を考慮したバイリニアモデルを用い、降伏判定には von Mises の降伏基準を用いた.

3.2 解析者 B の解析モデル

図-2(b)には,解析者 B の要素分割状況を示している. 本モデルの要素サイズは,かぶり厚の 50mm を基準と しているが,ウェブ領域では部材高さ方向に4分割と, 解析者 A の分割と比較して若干粗めに設定されている.

図-4には、解析者 B が採用したコンクリート要素の

図-5 鉄筋要素の応力-ひずみ関係

応力-ひずみ関係を示している. 圧縮応力下, 引張応力 下ともに土木学会コンクリート標準示方書【設計編】の 最大応力点を越えた後の軟化領域を考慮した材料構成モ デルを用いた. 引張応力下ではコンクリートと鉄筋の付 着効果に伴う Tension Stiffening が考慮されている. なお, ひび割れ発生後のせん断剛性は, ひび割れひずみのレベ ルに応じて低減させた. 鉄筋要素の応力-ひずみ関係は, 解析者 A と同様にバイリニアモデルとしたが, コンク リートの引張応力-ひずみ関係において鉄筋との付着効 果を考慮しているため,降伏強度を鉄筋単体の降伏強度 よりも低減させた(図-5 点線). なお,降伏判定にはコ ンクリート,鉄筋ともに von Mises の降伏基準を用いた.

3.3 解析者 C の解析モデル

図-2(c)には、解析者 C の要素分割状況を示している. 本モデルの要素サイズは、RC 要素の特性を考慮した上 で、要素の重心位置が鉄筋の重心位置と概ね等しくなる ように設定した.従って、他の解析モデルと比較して粗 めの要素分割になっている.また、図中の水色の要素は 鉄筋とコンクリートの付着作用が及ぶ領域、すなわち RC 要素としたが、灰色の領域は付着作用が及ばないも のと判断してプレーン(無筋)コンクリート要素を用いた.

解析者 C が採用したコンクリート要素の応カーひず み関係は解析者 B と同様である. 但し,付着ーすべり, ひび割れ面におけるせん断伝達モデルやひび割れ直交方 向における圧縮剛性低下等の影響が考慮されている.

図-6 載荷点位置における荷重-変位関係に関する実験結果と解析結果の比較

(No.1 供試体:曲げ破壊型)

(No.2 供試体:せん断破壊型) 図-7 ひび割れ分布性状に関する実験結果と解析結果の比較

4. 解析結果および考察

図-6 には、載荷点位置における荷重-変位関係を実 験と解析で比較している.図より, No.1 供試体に着目 すると,いずれの解析結果も鉄筋降伏時までの挙動は実 験結果と精度良く一致していることが分かる. しかしな がら,鉄筋降伏以後の挙動では各モデルで差異が生じて, 解析者 C の結果では変位 25mm 近傍で早期に荷重が低 下している.一方,No.2 供試体に着目すると,解析者 B, C の結果は実験結果の荷重-変位関係を概ね再現で きているが,解析者 A の結果は実験結果を過小に評価 している. 図-7 には、ひび割れ分布性状を実験と解析 で比較して示している.図より, No.1 供試体における スパン方向に分散した鉛直方向の曲げひび割れや No.2 供試体における斜め方向のひび割れは再現されており, ひび割れの定性的な特徴は捉えていることが確認できる.

5. まとめ

- 本検討で得られた知見を要約すると以下の通りである.
- 1)曲げ破壊型 RC 梁に関しては,鉄筋降伏時まではい ずれの解析も比較的精度良く一致したが、降伏以後 の終局荷重および変位の予測は困難であった. 但し, ひび割れ分布性状は定性的には再現可能である.
- 2) せん断破壊型 RC 梁に関しては、載荷初期の挙動は 再現可能だが、最大荷重の予測は困難であった.但 し、ひび割れの定性的な特徴は捉えることができた. 本検討は、北海道土木技術会コンクリート研究委員会 に設置された「材料劣化を考慮した構造性能評価に関す る研究会」における活動成果の一部である. 北海道大学 大学院の佐藤靖彦准教授,北武コンサルタント(株)の渡 辺忠朋専務取締役をはじめ、関係委員からは多くの貴重 なご意見を頂戴しました.ここに記して謝意を表します.