グルービング系凍結抑制舗装の物理的作用による氷板の破砕特性

Destruction properties of ice crust formed on the grooving type anti-freezing pavement due to effects of physical action

北海学園大学大学院	○学 生	員	田中	俊輔	(Shunsuke Tanaka)
北海学園大学工学部			小林	拓也	(Takuya Kobayashi)
北海学園大学工学部	正	員	武市	靖	(Kiyoshi Takeichi)
世紀東急工業株式会社	正	員	増山	幸衛	(Yukiei Masuyama)

1. はじめに

これまで、冬期道路における交通の安全確保のために 道路面、車両面から様々なアプローチがとられてきた¹⁾が、 冬期路面管理からは凍結抑制舗装が技術開発・導入され、 これまでにも数多く施工されている.

グルービング系凍結抑制舗装は、舗装面にグルービング を施し、そこに廃スタッドレスタイヤ等を利用したゴムチップ、 凍結防止剤(CMA)およびウレタン樹脂等を主材料とした凍 結抑制材を充填した凍結抑制舗装であり、物理的作用によ るたわみ効果と化学的作用による融氷効果を有している²⁾.

本研究においては、グルービング系凍結抑制舗装の物 理的作用によるたわみ効果に着目し、凍結抑制材に凍結 防止剤(CMA)を添加していないものを用いて氷板破砕の メカニズムを明らかにし、その効果について検討した.

2. 研究の概要

2.1 研究の流れ

本研究では、たわみ特性を有するグルービング系凍結抑 制舗装に付着した氷板が、繰返し交通荷重によってどのよう に破壊していくのかを観察し、たわみ特性による効果と、そ のメカニズムについて検討した.また、繰返し走行試験と FEM 理論解析も行い、比較検討した.

2.2 試験舗装の概要

試験舗装として用いたグルービング系凍結抑制舗装 (以下,凍結抑制舗装と略称)は本来,物理的作用と化 学的作用の複合作用を有した舗装²⁾として開発されたも のであるが,本研究では,凍結防止剤を添加せず,たわ み特性による物理的効果の発現ついてのみ実験を行った. また,比較舗装として密粒度 13F舗装(以下,密粒度と 略称)を用いた.

凍結抑制舗装の概要を表 2.1 に, 各舗装の表面状況を 図 2.1 にそれぞれ示した.

	グルービング系凍結抑制舗装
母体舗装	密粒度 13F 舗装
グルービング	9 mm
幅 (深さ)	(10mm)
凍結抑制材	ゴムチップをウレタン樹脂で結合
	させたもの(凍結防止剤添加なし)

表 2.1 各舗装の概要

写真 2.1 グルービング系凍結抑制舗装と密粒度 13F 舗装

繰返し載荷試験

3.1 試験概要

本試験は、写真 3.1 に示す土木材料試験装置を用いて 行った.本試験装置は恒温槽と多目的な載荷装置から構 成されていて、恒温槽は内部温度-30℃~60℃まで設定 でき、供試体の圧縮試験、曲げ試験や疲労破壊試験など の静的・動的載荷試験を行うことができる.本研究では、 動的載荷試験を行った.

写真 3.1 土木材料試験装置

3.2 試験条件

表 3.1 に繰返し載荷試験の試験条件を示した.荷重は, 接地圧が約 0.63MPa(大型車荷重相当)になるように 設定した.また供試体温度は,凍結抑制舗装で一般的に 性能評価温度とされている-5℃とし,供試体全体が一様 な温度となるように,恒温室で一日養生した.

氷板は, 密粒度に対して 1mm の厚さになる量の水を, 凍結抑制舗装にも散布して作成した.

E-8

衣 3.1 武殿朱件		
供試体温度	-5°C	
試験舗装	グルービング系凍結抑制舗装	
比較舗装	密粒度 13F 舗装	
接地圧	0.63MPa	
載荷板	直径 18cm, 底面が 硬度 65 程度の ゴム板になっている鋼製板	
載荷回数	0回,1回,50回,100回,500回,1000回	
路面状態	密粒度に対して氷板厚さ1mmの状態	

± 0 1

3.3 氷板破砕率の算定

氷板破砕率は、デジタルカメラで撮影した供試体の表 面状況の電子データを画像解析により2値化し、観測対 象区間の画像全面のピクセル数に対する氷板破砕(白)と判 別したピクセル数の百分率で表した.なお、氷板破砕は白に 判別されるが、わかりやすいように黒で表現した.

定義した氷板破砕率の算出式を式 3.1 に示した.

3.5 試験結果および考察

図 3.2 凍結抑制舗装の 1 回,500 回,1000 回載荷時の 氷板破砕状況,同様に図 3.3 に密粒度の表面状況,図 3.4 に凍結抑制舗装の各載荷回数の氷板破砕率を示した.

図 3.2 氷板の破砕状況(破線内は凍結抑制材部分)

図 3.3 表面状況

凍結抑制舗装は、1 回載荷時で既に 5%以上の氷板破 砕率となり、その後も載荷回数が増加するにつれて氷板 破砕率も高くなっている.特に1回載荷時の破砕発生は 顕著であり、凍結抑制材部分のたわみ特性が確認された. また、載荷回数の増加と共に氷板破砕率も増加したが、 破砕が発生した箇所は凍結抑制材部分のみで、舗装部分 までの広がりは見られなかった.これは、タイヤによる 水平方向のせん断荷重が作用しなかったことに起因して いると考えられる.

なお密粒度は、最後まで氷板破砕が見られなかった.

4. 繰返し走行試験

4.1 試験概要

凍結抑制舗装のたわみ特性による凍結抑制効果が期待 できることについては、前述した通りである.しかし、実際の 車両走行によるたわみ特性の発現には、タイヤによる走行方 向のせん断荷重などが加わるため、繰返し載荷試験の結果 とは、何らかの違いが出ることが考えられる.本試験では、氷 板路面で繰返し走行を行い、凍結抑制舗装と密粒度の試験 結果を比較し、式 4.1 に示す路面露出率³⁾ から評価した.

室内試験では、氷板路面に大型車交通荷重を与えるために、室内凍結路面走行装置³⁾(以下、走行試験装置と 略称)にソリッドタイヤを装着して試験を行った.

写真 4.1 に走行試験装置,写真 4.2 にソリッドタイヤ, 表 4.1 にソリッドタイヤの概要を示した.

写真 4.1 室内凍結路面走行試験装置

平成20年度 土木学会北海道支部 論文報告集 第65号

幅:直径	10cm : 58cm	
硬度	JIS 硬度 80±4	
接地圧	0.79MPa	

表 4.1 ソリッドタイヤの概要

写真4.2 ソリッドタイヤ

4.2 試験条件

表 4.2 に繰返し走行試験の試験条件を示した.路面温 度は-5℃,氷板の厚さは 1mm とし,繰返し載荷試験時 と同様にした.走行速度は繰返し走行試験時の走行試験 機の最大設定である 5km/h で行った.

	表 4.2 試験条件
路面温度	-5°C
試験舗装	グルービング系凍結抑制舗装
比較舗装	密粒度 13F 舗装
路面状態	密粒度に対して氷板厚さ1mmの状態
接地圧	0.79MPa
走行速度	5km/h
走行回数	0回,50回,100回,500回,1000回

4.3 試験結果および考察

凍結抑制舗装の各走行回数時の路面状況と路面露出率 を図 4.1, 試験結果をまとめたグラフを図 4.2 にそれぞれ示 した.

図4.1 試験舗装の路面状況と路面露出率

凍結抑制舗装は,走行回数 50 回の時点で路面露出が 発生しており,走行回数が増加すると共に路面露出率も 高くなっている.一方,密粒度は走行回数が 1000 回に 達しても,路面露出することはなかった.このことより, 凍結抑制舗装のたわみ特性による凍結抑制効果が期待で きると考えられる.

また繰返し載荷試験では、氷板が剥離して舗装が露出 することはなかったが、繰返し走行では、走行回数 50 回の時点で既に路面露出が見られることから、タイヤによる 走行方向のせん断荷重が作用していることが考えられる.

5. 有限要素法 (P法) — Stress Check による理論解析

5.1 試験概要

たわみ特性を有する凍結抑制舗装に付着した氷板が, 交通荷重によって破壊される氷板の路面剥離効果につい て有限要素解析プログラム(Stress Check⁴⁾)を用いて 検討した.

5.2 設定条件

5.2.1 材料条件

弾性係数とポアソン比の力学定数については、文献や 既往研究の成果などから一般的数値を採用した.また、 氷板の弾性係数はN.P.Lasca⁵⁾らの実験値を用いた. 表 5.1 に材料条件を示した.

表 5.1 材料条件

材料	弾性係数(MPa)	ポアソン比
氷板5)	7900	0.33
凍結抑制材	5	0.44
アスコン	13000	0.35
コンクリート	30000	0.2

5.2.2 荷重条件

荷重は大型車の輪荷重であるが、繰返し載荷試験と同 等の条件とするために接地圧が 0.63MPa となるように 設定した.なお、実際の路面では車の繰返し走行荷重が 作用するが、今回の解析では1回載荷での検討となる.

5.2.3 氷板の破壊条件

氷板破壊の有無は,解析によって得られる氷板のひず みに着目して,Malcolm MellorおよびDavid M Coleによ る研究成果⁶に基づいて判断した.

図 5.1 に示したように, 氷板のひずみが 0.05~0.5%に 達したときに初期破壊が発生し, 0.7~1.2%に達した時に完 全破壊が発生するとされている. 初期破壊が発生する時氷 板にクラックが入り, 完全破壊が発生する時氷板が剥離した と考える.

以上より,初期破壊が終了するひずみ0.05%をクラックが入る1次破壊の基準値とし,完全破壊が終了するひずみ0.7%を氷板が剥離する基準値とした.

氷板の破壊条件を表 5.2 に示した.

図 5.1 氷板の破壊過程⁶⁾

表5.2 氷板の破壊条件

	ひずみ(%)
1 次破壊(クラックが入る)	0.05 以上
2次破壊(完全に破壊する)	0.7 以上

5.2 解析モデル

本研究では、断面を 1 つの平面として 2 次元解析を行った. 図 5.6 に解析モデルを示した.

図 5.2 解析モデル

5.3 解析結果および考察

図 5.3 に解析結果を示した. 凍結抑制材部分のひずみ は 0.35%に達しており、初期破壊に達していると考えら れる. このことより、繰返し載荷試験の結果とほぼ同等 の結果が得られた.

図 5.3 解析結果

6. まとめ

・密粒度 13F 舗装と比較してグルービング系凍結抑制
舗装のたわみ特性による凍結抑制効果が明らかになった.
・繰返し載荷試験において、単純なたわみ特性による氷板の破砕状況を、氷板破砕率により明らかにした.また、
FEM 解析によっても比較検証を行った.

・室内の繰返し走行試験では、走行車両によるせん断荷 重をも考慮したたわみ特性による凍結抑制効果を路面露 出率によって明らかにした.

今後の検討課題として、凍結抑制舗装の凍結抑制効果お よびそのメカニズムをより明らかにするために、室内実験およ び野外観察に基づくデータの蓄積を行う必要がある.

【参考文献】

- 凍結抑制舗装技術研究会:凍結抑制舗装ポケット ブック,2003
- 2) 芳賀雄哉,渋谷拓司,田中俊輔,武市靖,増山幸 衛:グルービング系凍結抑制舗装の凍結抑制効果に関 する実験的研究,土木学会北海道支部論文報告集, 第64号,2008
- 田中俊輔,武市靖,増山幸衛:凍結抑制舗装の効果の評価に関する研究,(社)土木学会,第63回年次学術講演会講演概要集,2008
- 4) 菊地陽介,武市靖:理論解析によるグルービング系 舗装とゴムロールド舗装の氷板剥離効果に関する検討, 土木学会北海道支部論文報告集,第64号,2008
- 5) N. P. Lasca., et al : A Data Acquisition System for Testing the Mechanical Properties of Ice, Geotechnical Testing Journal, Vol.3, No.1, 1980,pp3-7
- 6) Malcolm Mellor, David M. Cole : DEFORMATION AND FAILURE OF ICE UNDER CONSTANT STRESS OR CONSTANT STRAIN-RATE, Cold Regions Science and Technology,1981, pp201-204