セルオートマトン(CA)モデルによる交通状態推定に関する研究

Simulation-based for Cellular Automaton for Simultaneous Estimation of Traffic State

北海道大学大学院工学研究科 ○学生員 秋谷 真 (Makoto Akiya) 北海道大学大学院工学研究科 正員 中辻 隆 (Takashi Nakatsuji)

1. 本研究の背景と目的

現代社会において自動車交通は経済活動や日常生活を 支える重要な役割を担っている。しかしその弊害である 交通渋滞によって多大な時間的損失や環境問題が引き起 こされ、それらの問題は多くの主要都市において深刻な 問題となっている。渋滞問題の解決においては、交通流 特性を表現する基本変量(速度 v、密度 k、流量 q)、ま たそれら変量の相互関係を把握する事が重要であり、そ の上でのリアルタイムの OD 交通量の推定が求められる。 その解決に向け、過去に多くの交通流モデルにより研究 がなされてきたが、未だ日本国内における決定論的手法 は確立されていない。

交通流モデルは、交通流を流体として捉えるマクロモ デル、車1台1台の挙動を扱うミクロモデルに大別され、 また近年ではその2つのモデルの中間とされるメソモデ ルがある。そのミクロモデルの中でも本研究で扱うセル オートマトン(CA)モデルは、計算負荷のかからない簡潔 なモデルでありながら、渋滞発生を相転移現象として捉 える際の表現に長けたモデルであり、その計算負荷の少 なさから動的なシミュレーションまでを視野に入れたモ デルとして、ヨーロッパを中心として研究が進められて いるモデルである。

図1 交通流モデルの分類

本研究では、この CA 理論に基づく既存の交通シミュレ ーションモデルと現実交通との乖離部分を修正し、より 現実的な交通流の再現を目的とする。

2. CA 理論

(1)CA 理論に基づく交通流モデル

セルオートマトン (Cellular automaton, CA) とは、格子 状のセルと単純な規則からなる、離散的計算モデルであ る。計算可能性理論、数学、理論生物学などの研究で利 用され、非常に単純化されたモデルであるが、生命現象、 結晶の成長、乱流といった複雑な自然現象を表現できる モデルとして様々な分野で研究の対象となっている。

以下、この CA 理論による交通流表現について説明する。

CA 理論に基づく交通流モデルとしての最も基本的モデルは次の2つのルールのみからなるルール184モデルである(図2)。

初期設定: 横並びの箱(セル)を用意し、適当に幾つか の箱に玉(粒子)を入れておく

ルール1:単位時間ごとに、玉を右の箱へ移す

ルール2:右隣の箱に既に玉が入っていれば動けない

			t				C			7			()	C		1			2				
図 2	2	Л	t+	- J	L	18	<u> </u>	15	违	ţ.	ノ ブ・	< :	Ŧ) の	挙]])(j	⊥ 進	行	 方	口	J :	7	בׂ)
t			\bigcirc	\bigcirc				\bigcirc		0	\bigcirc	\bigcirc		0		\bigcirc			0					
t+1			0		\bigcirc				\bigcirc	0	\bigcirc		\bigcirc		\bigcirc		\bigcirc			0				
t+2				\bigcirc		0			\bigcirc	0		\bigcirc		0		\bigcirc		\bigcirc			0			
t+3					\bigcirc		\bigcirc		\bigcirc		\bigcirc		\bigcirc		\bigcirc		\bigcirc		\bigcirc			\bigcirc		
t+4						0		\bigcirc		0		\bigcirc		0		0		0		0			\bigcirc	
t	0		0	\circ	0			0	0		0	T	0	0	\circ	0			\circ	0		0		\circ
t+1		0	0	0		0		0		0		Ò	0	0	0		0		0	Γ	0	T	0	0
t+2	0	0	0		0	Γ	0		0		0	0	0	0		0		0	Γ	0	1		0	\square
t+3	0	0		0		0		0		0	0	0	0		0		0		0	Γ	0	0	Γ	
t+4	0		0		0		0		0	0	0	0		0		0		0		0	0		0	\circ

図3 車の挙動 (上)低密度時 (下)高密度時

図3(上)の様に初期状態が低密度時は、操作を繰り返す 度に次第に玉はばらけて自由に動くようになり、図3(下) の様な高密度時では、<u>中央部の4つの玉からなる渋滞部</u> が実際の交通流の様に進行方向逆に伝播していくのが わかる。この様に、ルールに従い玉を順次動かしていく わけだが、この玉を車と見立てると、交通流の一般的特 性を表現できている事がわかる。

(2)既存モデル

代表的既存モデルとその特徴は以下の通りである。

(i)Rule-184[1]

- :前方に車がいる→止まる,前方に車がいない→進む
- (ii)Fukui-Ishibashi (FI) モデル
- :高速度(単位時間に2セル以上進む)に対応

(iii)Nagel-Schreckenberg (NS) モデル
: 高速度に対応, ランダムブレーキ効果に対応
(iv)Quick-Start (QS) モデル
: 運転手の見通しに対応
(v)Slow-to-Start (SIS) モデル
: 車の慣性(加速が遅れる効果)に対応

Rule-184 は上述の様に、CA 理論を用いた交通流モデ ルの中では一番単純なモデルであり、FI モデルは、一度 に2 セル以上進むことができるモデルである。NS モデ ルは、ほぼ FI モデルにランダムブレーキ効果がかかった ものであると考えてよい。ランダムブレーキ効果とは、 前に障害物がなくてもある確率で1だけ減速するもので ある。QS モデルは、運転手が直前の前方車だけでなく、 2 台先を見てある程度前方の車の動きを予測している効 果を取り入れたものである。SIS モデルは、一度停止し た車が 1 ステップ待って動き出すというものである(加 速の遅れ)。

そして 2007 年、西成らによって、パラメータを変化さ せる事で、(i)~(v)のモデルの特徴を説明可能なモデル、 S-NFS モデルが発表されている。このモデルは下記のル ールに従って次ステップにおける車両の速度、位置を決 定している。

S-NFS 車両挙動ルール

加速	$v_i^{(1)} = \min\{V_{\max}, v_i^{(0)} + 1\}$	
慣性	$v_i^{(2)} = \min\{v_i^{(1)}, x_{i+S}^{t-1} - x_i^{t-1} - S\}$	with the probability \boldsymbol{q}
減速	$v_i^{(3)} = \min\{v_i^{(2)}, x_{i+S}^t - x_i^t - S\}$	
ランダムブレーキ	$v_i^{(4)} = \max\{0, v_i^{(3)} - 1\}$	with the probability $1-p$
衝突回避	$v_i^{(5)} = \min\{v_i^{(4)}, \ x_{i+1}^t - x_i^t - 1 + v_{i+1}^{(4)}\}$	
車の移動	$x_{i}^{t+1} = x_{i}^{t} + v_{i}^{(5)}$	

 x_i^{t} は時刻t における車iの場所、S は見通しの台数を表 している(S=1:直前車両により自車の動きを決定、S=2:更 に一台前の車の状況も、自車挙動に影響)。確率rでS=2、 1-rでS=1 とする。現在の速度 $v^{(0)}_i$ を与えると、次の時間 ステップの速度 $v^{(4)}_i$ が求まり、その速度で全ての車を同 時に動かす。次の時間ステップでは、 $v^{(0)}_i \leftarrow v^{(4)}_i$ として同 様にルールを適用する。

本研究では、様々な既存研究との比較を行いやすく、 渋滞相転移部の特性を表現可能なS-NFSモデルをベース として、新たなモデルを作成した。

3.本研究におけるモデル

本研究における、S-NFS モデルからの変更点は大きく 以下の2つである。

- ・見通し範囲の設定
- ・衝突回避ルールの変更
- (1) 見通し範囲の設定

S-NFS モデルは各既存モデルの特性を含んでおり、この見通しの概念は QS モデルに関連する。

今、確率rの下にS=2(自車挙動は2台前の車からも影

響)となった場合において、2台前の車両が図4の様に自 車から相当距離離れていた状況を想定する。S-NFSモデ ルではこの場合でも2台前の車の位置、速度により自車 の動きを決定するが、それがモデルにおいて悪影響を及 ぼす場合があるのではないかと仮定した(2台前の車が渋 滞最後尾であった場合等)。

図4 S-NFS モデルでの2台前の車の扱い

そこで、本研究ではドライバーの運転に影響を与える であろう見通し範囲を設定し、その範囲内に2台前の車 が存在しない場合、S=1(直前車両の状況のみで自車挙動 を決定)へ変更し、2台前の車は自車の動きに影響を与え ないとする(図 5)。

図5 S-NFS モデルでの2台前の車の扱い

(2) 衝突回避ルールの変更

S-NFS モデルにおける衝突回避のルールを再掲する。

衝突回避
$$v_i^{(5)} = \min\{v_i^{(4)}, \underline{x_{i+1}^t - x_i^t - 1}_{(a)} + \underline{v_{i+1}^{(4)}}_{(b)}\}$$
 (1)

(a)、(b)はそれぞれ時刻tにおける前方車との車頭間隔、 前方車の速度を表す。この条件では、パラメータ次第で は、ルール上では図6の様な現実交通では考えづらい車 頭間隔での走行(図6[右])や、急減速を引き起こす(図 6[左])ケースがあり得る(色がついているセルはそのセ ルに車が存在している事を示し、セル内の数字はその車 が時刻tでもつ速度である)。

図6 現実交通流との乖離

本来であれば、図 6(左)のケースであれば、急減速を避けるために、停止車両から更に離れた地点より減速を段階的にするべきであり、図 6(右)のケースであれば、速度に見合う車間を確保するための減速が必要なはずである。

この問題点を修正するために、本研究では車の持つ速 度に対応した制動距離、空走距離の概念を衝突回避のル

ールに組み込む事とした。

自車の次ステップでの速度を決めるにあたり、先行車の速度 v_{i+1} 、及び先行者との車間距離gapから考えるが、 式(2)を満たす最大の速度 v_{ix} を求め、その速度 v_{ix} と(1)式 での $v^{(4)}_i$ とを比較し、最終的な自車の次ステップでの速 度 $v^{(5)}_i$ (=min($v^{(4)}_i$, v_{ix}))とする。

先行車制動距離 $(D(v_{i+1})) +$ 車間距離(gap) >追従車(自車)の空走距離 $(DD(v_{ix})) + 追従車制動距離<math>D(v_{ix})$ (2)

v_{ix}のv導出に際し、制動距離、空走距離と速度の持つ 関係を次の式で表す。

空走距離DD(v) = 速度(v)km/3600 × 0.75

制動距離 D(v)= 速度(v)²/(2× 9.8×0.7(摩擦係数))

モデル上での速度は v(cell/step)=0,1,2,...,6 までの7 段 階とするが、この速度を上式に入力するため、 v=1(cell/step)が現実交通では速度 21.6km/h に相当すると して換算する。この換算値に対応する制動距離 DD、空

走距離 D と速度の関係は表1の通りである。例えば、先行車速度3(cell/step)、車間距離2(cell)の場合、v_{ix}は3(cell/step)となる。上記のルールを組み込む事で、急減速発生確率は低下し、現実交通流の様な、段階的な減速を実現している。

	DD	D
V=0	0	0
V=1	1	0
V=2	1	1
V=3	1	3
V=4	2	5
V=5	3	8
V=6	3	12

表1停止距離

4.分析結果

(1)基本量定義

ある時刻 t における 3 つの基本量、流量 q、密度 k、(平 均)速度 v を本研究では次の様に定義する。

密度 k:(ネットワーク内の車両台数)/(セル長:200 セル) 速度 v:(ネットワークに存在する車両台数の速度の総 和)/ (ネットワーク内に存在する車両台数)

流量 q:密度×速度

尚、本研究における最大速度は 6(cell/step)として行う。

(2)分析条件

S-NFS モデルと、本研究で作成した修正モデルにおい て両者の比較を行う事とする。扱うパラメータはランダ ム減速の発生確率 p、挙動ルールに慣性に関するルール を導入する確率 q、対象車より 2 台先の車の影響を受け る確率を r とし、修正モデルでは見通し範囲(VA)が加わ る。本研究ではランダム減速確率は 0.05 で固定して扱い、 ①S-NFS モデル(r=q=0.2)、②S-NFS モデル(r=q=0)、③修 正モデル(r=q=0.2)、④修正モデル(r=q=0)の4パターンの 場合での比較を行う。

対象ネットワークはセル長 200 セルの単路とし、出口 地点に到達した車は、出発地点に戻るという循環型の境 界条件を設定している(図 7)。また、ネットワーク上に流 入ランプ、流出ランプを1ヶ所ずつ設定しており、ネッ トワーク内の密度を制御する。 本研究では初期密度を 1(200 セル全てに車が埋まって いる状態)とし、流入確率 0、流出確率 (流出地点を通り 過ぎる車がネットワーク外へ流出する割合) 0.2 とし、パ ラメータを変化させたそれぞれの場合での時間毎の密度、 平均速度、流量を出力し、全ての車が流出した状態(密度 0)まで繰り返す。

	(出口)						流ノ	入地	点	ł	流出地点										(入口)				
t		þ						Ļ														1			
+1								<u> </u>													Ц	m	0		

図7 循環型境界条件

(3)基本図比較

図8,9は4パターンそれぞれの場合のQ-V曲線である。 図8において、最大流量が修正モデルの方が低い結果と なったが、これは密度が低下した際に最大速度6で自由 走行する場合において、上述した衝突回避ルールの変更 により、修正モデルでは自由走行時の車頭間隔をS-NFS モデルに比べ大きく取る様に設定しているため、その結 果渋滞流から自由流へ移行する際の密度が低下している 事が影響したと考えられる。

また、図 8,9 を比較した際、修正モデル、S-NFS モデ ル双方で流量が減少しているが、これはパラメータ q の 効果により、SIS モデルの特徴である加速が遅れるとい う現象が発生しているためである。

図 9 q-v 曲線(q=r=0.2)

(5)急減速確率

ある時刻tにおける車x_iが持つ速度v^t(x_i)と、x_iが次の時 刻t+1において持つ速度v^{t+1}(x_i)から加速度を求め、比較す る4パターンにおいて、急減速がどの程度の割合で発生 しているかを調べた。表2は4パターンそれぞれの減速 度毎の回数である。

表2より、修正モデル(q=r=0.2)の場合、全ての車両が

流出完了するまでに発生する減速の総回数は19336回あ り、そのうちν^t(x_i)からν^{t+1}(x_i)へ速度2以上の減速が起こ った回数は1606回という事になる。この表より、減速回 数は、修正モデルに比べS-NFSモデルでは少ないが、急 減速(α<=-2の場合とする)の起こる回数は、圧倒的に S-NFSモデルのほうが多い事がわかる。これは、修正モ デルの方が段階的に減速を行うのに対し、S-NFSモデル では大きな減速が頻繁に起こっているという事を示唆す る。図10,11に前方が渋滞していた際の両モデルの減速 イメージを記載する。

								α<=−1				α<=-2				α<=-3				α			
修正		1	933	36			160	06				19				0							
修正モデル(q=r=0)									1	767	73	671						-	10	(0
S-NFSモデル(q=r=0.2)									1	648	37			41	56			138	84	448			48
S-NFSモデル(q=r=0)									1	343	30			180	68			60	80	217			17
V=6																							
t			•															•					
t+1								•												•	•		
t+2												\bullet								•			
t+3																		0					

図 10 修正モデルの段階的減速

表 2 減速回数

t+4

t

t+1

t+2 t+3 V=6

図 11 S-NFS モデルの急減速 図 12,13 は急減速が起こった際に、その時刻に生じた 減速回数のうち、何回を急減速が占めていたかを表すグ ラフである。横軸のステップ数であるが、実際は4パタ ーン全て、全車両がネットワークから流出するのに 1600 ~1800 ステップを要すが、1200 ステップ以降はネットワ

ーク内の車両台数が低くなり、減速回数が大きく減るため 1200 ステップまでのグラフを記載している。図 12,13 からも、急減速を示す割合は修正モデルの方が低いという事が読み取れる。

図 8,9 より、q-k 曲線においては修正モデルと S-NFS モデルにおいて大きな差は見られなかったが、個々の車 の動きに着目し、ステップ毎の速度、加速度を確認して いくと、両者には大きな違いがあることがわかる。

6.おわりに

本研究では、交通状況の解明において近年注目される CA 理論による交通流モデルの作成に取り組み、既存研 究の問題点の解消について扱った。

従来の CA 理論による交通流モデルにおける既存研究 は、渋滞相から自由走行流への相転移に着目する研究が 広く行われており、その点で一定の評価を受けていると 言える。ただ、本研究において、車両一台一台の速度、 加速度に着目して行うと、現実交通流と大きな隔たりが あるという事が示される。そうした問題点の中でも、本 研究では、衝突回避の新ルールを組み込む事で、これま でに指摘されてきた急減速の発生抑制を達成する事がで きた。

今後の課題として、本研究では見通し範囲を一定値と して扱ったが、実際各ドライバーによって見通し範囲は 異なる。また、密度によって見通し範囲も変わるはずで ある。今後はそれらの点を精査していきたい。更に、本 研究ではコンピュータ上のシミュレートに留まったが、 今後は実データを用いて、本研究で利用したモデルの検 証実験を、見通し範囲の精査と併せて行うことで、より 現実的交通流を再現できるモデルに改良していく予定で ある。

7.参考文献

1. 酒井聡士・西成活裕・飯田晋司、確率的に拡張された 交通流セルオートマトンの相転移ライン導出、2007

2. 林洋、自動車事故鑑定学入門

3. 杉山雄規、交通流の物理、名古屋大学大学院、2003

4. 加藤恭義・光成友孝・築山洋、セルオートマトン法、 森北出版、1998

5.K.Nagel and M.Schreckenberg, A cellular automaton model for freeway traffic, 1992

6. 友枝明保、超離散化法及び CA モデルによる交通流の 研究、平成 18 年大阪大学大学院

 近藤竜平、ミクロ交通流モデルを組み込んだ OD 交通 量の動的推定に関する研究、平成 18 年度北海道大学
 8.交通工学研究会、交通流シミュレーションの標準検証マニュアル、平成 14 年