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1. Background of the Study

This paper introduces a solution methodology for the transit (bus) route network problem for a sample city with
available PT data. Several methodologies, in varying sophistications, have been developed to generate route sets for transit
routing; however, these solutions appear viable only in virtual networks, where nodes and links are characterized to allow
for shortest paths to be searched in time units. However, unlike that of the single vehicle problem, travel time is not the
optimal criterion for transit lines. In practice, transit route design is not solely a result of random linkages between nodes.
Otherwise, there can be an infinitely large number of candidate routes for only one OD pair. Without regard for existing
OD patterns, the path search becomes more complex as the network size also increases. Searching for feasible routes must,
therefore, incorporate existing characteristics in the sample city on which the network bed is based. In doing so, the search
algorithm is simplified and the results are closer to the side of practicality.

2. Objectives of the Study

The novelty in this study is the reduction of the search space for feasible routes by using OD patterns derived from
existing PT data so that links can be weighted according to preferential value (using a coefficient for link attractiveness).
This ensures that the resulting shortest paths in a candidate route set reflect the actual preferred paths of non-users of transit
services. The goal of the study is essentially to provide a practical procedural solution to the transit network problem by
reducing the search space for feasible routes by incorporating existing path preferences to do avoid complex calculations for
a large number of nuisance paths. Also, as transit routing is a systems problem, several optimizers are integrated in the
methodology in order to ensure shortest, direct paths, with optimal fleet size.

3. Methodology

Figure 5 on the third page is a simplified schematic diagram for modeling the network, the steps in the path search
algorithm with the search space reduction scheme, and fleet size optimization. Through the search space reduction scheme,
link-attractiveness is calculated so that in applying Dijkstra’s algorithm to find shortest paths, optimal criteria will include
total travel time and total system cost (in time units) and link attractiveness. Recall that the main goal of the study is to
provide a procedural solution for the transit routing problem, in order to generate the shortest routes that minimize the total
system cost. PT data and traffic zones are both taken from the Obihiro Area General Urban Traffic System Investigation
(Masterplan Development Investigation)[1] released in March 2006.

3.1. Sample Network with OD Data
3.1.1. Obihiro Area
The small-sized city of Obihiro was used to
illustrate the usefulness of search space reduction schemes
in generating candidate route sets for transit (bus) lines. OD
tables are a rich source of mobility patterns. There are more
inter-zonal trips in Obihiro than there are intra-zonal trips.
However, due to insufficient digital data regarding bus stop
locations, nodes were made to represent demand zones, or
sub-centers in the city where trips are densely distributed.
As of 2006, the population of Obihiro was 171,153
for an area of 619 km® Obihiro is the sixth-largest city in
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Hokkaido; however, the city boundaries do not encompass
all the conurbation and a large swathe of countryside is
included. If the adjacent urban areas of Otofuke, Memuro,
and Makubetsu were included, the population would be at
least 200,000 to 220,000 and Obihiro would be the fourth-
largest city in Hokkaido [1].

[[] zone with many trips to SC-A
[J zone with many trips to SC-B

[] zone with many trips to SC-C

[ zone with many trips to SC-E

[ zone with many trips to SC-D | “™"

—

.o

"% Residential Sub- Center
-

+* ™2 Incustrial Sub-Center
*a N

"
:. < Urban Sub-Center

[

: o ) Figure 1. Zonal Attributes of the Obihiro Area
The proponent is deeply familiar with OD-based

measures for restructuring the city’s bus network. Car dependency is very high for a population with 60% of its drivers
over 65 years of age[4]. Hence, triple efforts are exerted to promote public transportation. It is in this vein that transit
studies in local cities are also important.
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3.1.2. Demand Matrix

From figure 2 below we learn of zones with very active cross-trips and sixteen zones with denser trip distributions.
First we deal with the inter-zonal movement patterns in order to test whether our search space reduction scheme is workable.
If we were to schematically represent trip distribution for this OD matrix, we would see figure 3 (orthogonally arranged).
Trip patterns connect nodes and redundant paths, vis-a-vis spatial proximity, are removed.

Figure 2. OD Matrix for the sample city on which the network bed is based
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3.1.3. Demand Zones and Known OD Patterns

The proponents aim to incorporate existing characteristics (e.g., actual mobility patterns) of the sample city into the
virtual network of nodes and links through which the best set of links for each route can be computationally determined.
Coefficients for link attractiveness will be used to reflect such links. Figure 3 below puts on a view of how these
preferential links are located in the network. Figure 4 illustrates the final network model.

3.1.4. Network Model

INTER-ZONAL TRANSIT LINES The proponents
0801 T—= D T—=0503 T D T—=0502T—— D T——0204 are USing Netlogo to
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D 001 T—— D T——0501 T D ——0203 T—— D search with reduced
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REDUNDANT PATH-FREE NETWORK nodes  (representing
Figure 3. Dominant Inter-Zonal Trip Patterns Figure 4. Network Model

demand zones) and L
is the set of m direct links (i, j), connecting node i to node j in the network. Each distinct node represents a route station and
is assigned a route ID.

Each path, which connects stations (nodes) of origin and destination, is an ordered sequence of nodes and links,
{n;=0, (n;,n,), ny, (Np,13), N3, .., (y1,1),0x = d). We define the set of paths for an OD to be P;; and C(P") as the set of
corresponding path times (equivalent costs) = {t(p;), t(p2), -..t(px)}. We assign dummy nodes to account for inter-zonal
trips with large distances (¢ and ¢ for links connected to dummy nodes are assigned zero values for transfer time and waiting
time). This helps ease the work on assigning “t” values for links that represent long distances, vis-a-vis links representing
short distances. For simplicity, links shall be treated as homogeneous road segments.
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FLEET SIZE OPTIMIZATION
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Figure 5. Schematic diagram for the overall flow of the solution methodology
3.2. Route Set Generation
3.2.1. Shortest Path Algorithm

Search Space Reduction is made possible by using link attractiveness (U), which is expressed as a coefficient in
the equation for total route cost (C[P™]). Such coefficients allow for the search space for feasible paths to be smaller in
scale, instead of generating an infinitely large number of possible paths. Route Links correspond to segments of transit
routes between consecutive prescheduled transit stations on the routes. Each link (i, j) has a value associated with it given
by the time (cost) required to travel/transfer from node i to j. In particular, ¢;; is the weight representing the sum of time
(cost in time units) traveling from node i to node j if the link (i, j). Basically, we consider three attributes related to the total
travel cost: (1) the riding time; (2) waiting time; and (3) operating cost converted into time units. .

Dijkstra’s Algorithm, which is the basic multi-path search for most transit network problems, is used in the
second phase of the methodology. It is also compatible with the procedure in this study, where Netlogo is used to simulate
induced flow paths due to attraction to preferential links (see ﬁgure 6). First we let K=1 and find Pg™ (the shortest path
from node “i” to destination “j”. All the paths that are found using this search statement are stored in a shortest path matrix,
R, which w111 be used to ﬁnd the Kt shortest paths. When K (the maximum number of alternative shortest routes from
which the least costly route is determined) is reached, the iteration stops and proceeds to the calculation of C[P' 41, with
coefficients for link attractiveness (U) for a particular OD pair. Only the minimum cost path (in time units) in K" needs to
be compared with the newly added paths.

Computational statements are also being studied in order to transform them to codable form in Netlogo. For
instance, the perceived travel time on the k¢ path between origin i(r) and destination s(j) is Tx™ = t¢™ + &, where t¢" is
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the measured travel time and §" is random term, the distribution of which is given by the Gumbel density function (Sheffi,
[2]). The proponent is yet to decide how Tx"™* shall be determined for our sample city. Meanwhile, to test the performance
of our solution methodology, assumed values are used.

Figure 6. R. Gaid’s Shortest Path Algorithm via Netlogo

turtles-own [node-id L T prev-node]
links-own [weight]
globals [links-list nodes node-labels]

to setup
clear-all
set-default-shape turtles "circle"
set nodes [matrix of nodes]
set node-labels [node ID]
set links-list [matrix for O; D; tj]
end
to layout [to set up network bed]
end
to set up node [node characterization]
end
to set up link [link characterization]
end
to shortest-path
let source_id 0
let destination_id 0
foreach node-labels
[
if (item 1 ?) = source) [ set source_id item 0 ? ]
if (item 1 ?) = destination) [ set destination_id item 0 ? ]

1
if not (source_id = destination_id)
ask turtles

[
set L 1000
setT1
set prev-node 1000
1
ask get-node source_id [setL 0]
while [([T] of get-node destination_id) = 1]

[
let v [node-id] of min-one-of turtles with [ T = 1] [L]
ask get-node v
[
setTO
ask link-neighbors

[
let w ( [L] of myself + [weight] of link [who] of myself [who] of
self )
ifL>w
[
setLw
set prev-node [node-id] of myself
|
|
1

ask get-node destination_id [ set color red ]
let prev [prev-node] of get-node destination_id
while [not (prev = 1000)]

ask get-node prev [ set color red ]
set prev [prev-node] of get-node prev
1
1

end

3.2.2. Least Cost Paths

The study aims to minimize total travel cost for one transit
(bus) unit, given by C", which is a variation of C%, the total distance-
related cost. These two terms are calculated based on values derived for
unit distance cost (d), unit travel cost of transit unit w (a"), and the
distance traveled on link a (d,). To solve time and distance costs, we
use the equations (presented by Jeong, Hong, and Kim, 2007)[3] in their
study on flexible multi-path search algorithms.

C’= Zd " Zaep(dy")

Cw=awzkzaepk,|,1(tak)

c=c"+cC" total path/route cost

CIP1=CcU total cost with link attractiveness coeff.
The shortest path search is done for all OD pairs, in such a

way that those which reflect actual dominant OD patterns are calculated
with coefficients for link attractiveness to induce preferences for such
links, thereby decreasing the search space for feasible routes. The cycle
is repeated until the K¢/ shortest path is updated in the alternative route
set, in which the path with the least cost (as aforementioned) is stored in
the Candidate Route Set until the whole phase is performed for all OD
pairs in the sample city.

total distance-related cost
transit unit operational cost

3.3. Fleet Size Optimization

Service frequency is a function of fleet size. In this part of the
methodology, we deal with only the shortest, least costly routes stored
in our Candidate Route Set. We use linear optimization to determine
the best fleet size for this singular “best” route. Values for T and C will
be taken from the study on the sample city’s bus route restructuring
(Gaid, 2008)[4]. The details for linear optimization are clearly
presented in figure 5.

4. Conclusion

In this study, running the program with Netlogo, using
assigned weights (expressed by coefficients for link attractiveness) for
preferential links clearly reveals that the shortest, least costly paths
selected also meet the preferred paths for each dominant OD pair
reflected in the sample city’s demand matrix. This reduces the search
task as not all feasible paths need to be analyzed. With linear
programming, the fleet size is also minimized without contradicting
existing service frequency standards or existing demand size per route.
For small networks, such as that of our sample city, this two-step
program for determining the best set of routes in a transit (bus) network
produces the shortest, least costly routes with optimal fleet size.
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