3次元DEMを用いた落石シミュレーションの定数設定法に関する検討

Numerical Study for Rockfall Simulation Using 3Dimension Distinct Element Method

也 (Shin-ya Omote)	真也	表	員	OE	寒地土木研究所	土木研究所
钱 (shin-ya Okada)	田慎哉	岡日	員	正	寒地土木研究所	土木研究所
之 (Hiroyuki Ishikawa)	川博之	石丿	員	正	寒地土木研究所	土木研究所
祐基 (Yuki Kusakabe)	下部祐基	日一	員	正	寒地土木研究所	土木研究所
爹 (Yoshihiko Ito)	東佳彦	伊耳	員	正	寒地土木研究所	土木研究所

1. はじめに

個別要素法を用いた落石シミュレーションにおける解 析定数の設定法について屋内実験及び現地実験を行い定 数の設定に関して検討を行った.

2. 屋内実験による個別要素法の定数設定

岩体を球体に整形し破砕や回転等を除いた純粋な反発 係数を得るため屋内試験を実施した.

(1) 屋内実験(自由落下試験)

写真-1には、屋内実験状況を示す。屋内実験で用いた落下試験体と平盤試験体は、後述の現地実験や落石 挙動解析を行う当該崖斜面と地質条件・地質構成が類 似している斜面から採取した岩から試験体を作製した。

a) 落下試験体形状·寸法

写真-2には、予備実験で用いた試験体を示す.屋内 実験に用いた岩の球体は3種類であり、直径および質量 はそれぞれ φ10cm 1.3kg、φ20cm 10.8kg、φ30cm 35.5kg である.また、平盤試験体は岩盤(63N/mm²)お よびモルタル盤(35N/mm²)を作製した.

b) 落下試験と計測方法

落下試験の落下高さは任意に変化させ、衝突前後の速 度を計測し反発係数を求めた.なお、岩球体の反発係数 は落下高さ、落下速度が精度よく算定できる 2 回目、3 回目の跳躍時について検討している.

c) 岩球体の落下試験結果

表-1 には、落下実験により得られた屋内実験結果を 示す.実験結果より、大きさの異なる 3 種類の岩球体 を落下させた場合、および自然岩体を落下させた場合 の反発係数を求めた.

図-1 には、質量と反発係数との関係を示す. 岩球体 を岩盤へ落下させた場合には、岩球体が大きくなるのに 伴い、反発係数は低くなる傾向がみられる. なお、下部 の平盤試験体には損傷は生じていない.

図-2には、岩球体をモルタル盤に落下させた場合の 質量と反発係数との関係を示す、岩盤に落下させた場合 と同様に岩球体が大きくなるにつれて反発係数は低くな る傾向がみられる.なお、本実験においてはモルタル盤 に衝突痕が残っている.

図-3 には、衝突速度と反発係数との関係を示す. 岩 球体を岩盤に落下させた場合、一部例外となる箇所も見

写真-1 屋内実験状況(自由落下試験)

写真-2 落下試験体

られるが結果のばらつきと判断できる程度であり,実験 を行った範囲では衝突速度が大きいほど反発係数は低く なる傾向がみられる.

図-4 には、岩球体をモルタル盤に落下させた場合の 衝突速度と反発係数との関係を示す.結果にばらつきが あるものの岩盤に落下させた場合と同様に衝突速度が増 加するほど反発係数が低くなる傾向がみられる.

d) 岩体の落下試験の結果

図-5 には、自然岩体の質量と反発係数との関係を示 す. 質量の変化に対して反発係数には相関はみられず、 一定の範囲内に収まる傾向を示している.

図-6 には、衝突速度と反発係数との関係を示す.衝 突速度の変化に対して反発係数には相関はみられず、質 量と同様に一定の範囲内に収まる傾向を示す.

また,自然岩体の結果は岩球体と比較して低い反発係 数となっていることが分かる.反発係数が岩球体に比べ 低い値となったのは,岩体が平盤試験体との衝突時に反

C - 6

発エネルギーの一部が回転力に変換されたことや、衝突 時に局所的な破砕や欠損、変形やめり込みによりエネル ギーが消失したためと推察される.

e)屋内実験のまとめ

これらの屋内実験の結果から,試験を行った範囲内で は落下試験体の材質及び被接触面の材質が同じであって も,落体の形状によって反発係数が異なる結果が得られ た.また、落下試験体の材質が同じであっても反発係数 は,岩球体では質量や衝突速度が増すほど反発係数は低 くなる傾向が得られ,岩体では一定の範囲内に収まる傾 向がみられた.

結論として,理論的な反発係数を用いることが必ずし も良好な結果を得ることにはならないものと推察される. よって,実際の斜面にて落石実験を行い,その結果をも とに解析結果を照査することとした.

現地実験(実斜面を用いた落石実験)

本検討では,DEM手法の検証を行なうために実斜面 での落石実験を行った.落石実験は,落石挙動解析を 行う当該崖斜面と地質条件・地質構成が類似している 斜面を選定した.

写真-3 には現地試験で用いた試験体を示す. 落石 岩体は直径 30cm 程度, ゴムボールは直径 30cm と 20cm である.現地実験は 2 箇所で実施し,落下試験体 を斜面頂部から自由落下させた.この試験で対象とし た斜面の比高は A 斜面は 80m, B 斜面は 35m 程度であ る.

(1) 現地実験の結果

図-7 には落下位置 A からの落下軌跡と後述の現地 実験の再現解析結果を並べて示す. なお, 図の右側が実 験結果, 左側が解析結果である.

図の実験結果より,落石は斜面が沢状になっているこ とから沢の内側に誘導されるように落下していることが 分かる.その落下時間は10秒程度であった.

図-8には落石位置 Bの場合を同様に示す. 落石位置 Bにおいては,斜面が平滑に近いことから局所的な起伏 に影響され,落下当初から落下軌跡に違いがみられた. なお,その落下時間は4秒程度であった.

これらのことより,落下軌跡は斜面地形や斜面性状か ら受ける影響が大きいことが分かる.そこで,落石挙 動解析の当該斜面モデルはより細かな斜面地形の再現 や,屋内試験で得られた反発係数を考慮してモデル化 することとした.

4. 現地実験の再現解析

屋内実験により得られた反発係数について,その落石 シミュレーションへの適用性および解析精度を検証する ことを目的として,前述の現地実験の再現解析を実施す ることとした.

落石実験を行った当該崖斜面は,事前に航空レーザ 測量により詳細な斜面データを得ている.この測量デー タをもとに斜面をモデル化し再現解析を行うこととした.

(1) 現地実験の再現解析に用いる定数設定

表-2には,再現解析に設定したケース及び定数を示

表-1 屋内実験結果

	· · · · · ·	落体		落下	バ	反発			
	半板	形状	重量	寸 法	高さ	ウン	係数	平均	採用値
	们員		(kg)	(cm)	(m)	k	е		
	岩盤	球体	1.3	$\phi 10$	0.5	3	0.68		
	岩盤	球体	1.3	φ10	1.0	3	0.64	0.66	
	岩盤	球体	1.3	φ10	2.0	2	0.60	0.00	
	岩盤	球体	1.3	φ10	3.0	2	0.70		
	岩盤	球体	10.8	φ 20	0.5	3	0.70		
	岩盤	球体	10.8	φ 20	0.5	3	0.73		0.60
щ	岩盤	球体	10.8	φ 20	1.0	2	0.48	0.61	
石球	岩盤	球体	10.8	φ 20	2.0	3	0.53		
体	岩盤	球体	10.8	φ20	3.0	1	0.61		
\mathcal{O}	岩盤	球体	35.5	φ 30	0.5	3	0.60	0.47	
反	岩盤	球体	35.5	φ 30	1.0	2	0.34	0.47	
発	モルタル盤	球体	1.3	φ10	0.5	3	0.51		
係	モルタル盤	球体	1.3	φ10	1.0	3	0.61	0.52	
数	モルタル盤	球体	1.3	φ10	2.0	2	0.49	0.53	
	モルタル盤	球体	1.3	$\phi 10$	3.0	3	0.49		
	モルタル盤	球体	10.8	φ20	0.5	2	0.48		0.46
	モルタル盤	球体	10.8	φ20	1.0	2	0.44	0.52	
	モルタル盤	球体	10.8	φ20	2.0	3	0.63		
	モルタル盤	球体	35.5	φ 30	0.5	1	0.25	0.00	
	モルタル盤	球体	35.5	φ 30	1.0	1	0.27	0.20	
	岩盤	岩体	1.9	□12×10×13	1.0	1	0.24		
	岩盤	岩体	1.6	□9×8×19	1.0	1	0.34		
	岩盤	岩体	4.7	□13×12×20	1.0	1	0.44		
	岩盤	岩体	4.6	□13×8×30	1.0	1	0.33	0.34	0.24
	岩盤	岩体	10.5	□20×20×22	1.0	1	0.31		
	岩盤	岩体	3.6	□9×14×16	1.0	1	0.31		
ш	岩盤	岩体	6.5	□16×18×23	1.0	1	0.43		
石は	モルタル盤	岩体	1.6	□9×8×19	1.0	1	0.30		
14 の	モルタル盤	岩体	1.9	□12×10×13	1.0	1	0.27		
反	モルタル盤	岩体	3.6	□9×14×16	1.0	1	0.31		
発	モルタル盤	岩体	4.7	□13×12×20	1.0	1	0.24		
係	モルタル盤	岩体	2.3	□16×7×17	1.0	1	0.16		
数	モルタル盤	岩体	5.8	□17×15×23	1.0	1	0.30	0.20	0.15
	モルタル盤	岩体	6.0	□14×21×22	1.0	1	0.29	0.29	0.15
	モルタル盤	岩体	3.0	□13×13×22	1.0	1	0.38		
	モルタル盤	岩体	2.7	□13×10×14	1.0	1	0.34		
	モルタル盤	岩体	3.8	□16×13×20	1.0	1	0.15		
					1.0	4			
	モルタル盤	岩体	1.5	□10×8×16	1.0	1	0.38		

す.反発係数は屋内実験結果(表-1)の値を用い,岩 球体から求めた反発係数と,岩体から求めた反発係数の 2つを設定することとした.ここで,岩球体の反発係数 は平均値を用いることとし,岩体の反発係数は岩球体と の差異を明瞭にするために最低値を用いることとした.

また,落石岩体が斜面との衝突時に受ける抵抗を再現 するため,阪口¹⁾らの提案する転がり摩擦抵抗を落石 岩体を表す円形要素に設定した.ここで自然落石岩体に ついてはその形状を簡素化して考慮し,六角形断面と八 角形断面の2ケースでモデル化することとした.すなわ ち,六角形断面の転がり摩擦係数を 0.58,八角形断面 を 0.41 とした.

表-3 には、現地実験で用いた岩石試験結果を示す. 要素間のバネ係数については岩片の超音波伝播速度から 導き、法線方向 $k = 1.2 \times 10^7$ kN/m,接線方向 $k = 3.0 \times 10^5$ kN/m とした.なお、粘性減衰係数は反発係数から 導いた²⁾.

平成20年度 土木学会北海道支部 論文報告集 第65号

(2) 現地実験の再現解析結果

a) A 斜面の再現解析結果

前述の図-7 の数値解析結果より,再現解析での落 石軌跡は岩球体の反発係数,岩体の反発係数ともに類 似の傾向を示していることが分かる.

図-9 には、再現解析の鉛直変位と落下時間の関係 を示す.図より、解析結果の落下時間は岩体の反発係 数を用いた場合がより長く、10 秒程度である.これは 現地実験と同程度である.これより A 斜面では岩体の 反発係数を用いた場合により高い再現性が得られたも のと推察される.

b) B 斜面の再現解析結果

前述の図-8の数値解析結果より,現地実験の岩体

図-2 モルタル盤と岩球体の質量と反発係数

図-6 衝突速度と反発係数

写真-3 現地落石実験の落石岩体試験体

(赤)の落石軌跡と,再現解析の岩球体_六角形の場合の落石軌跡が類似の傾向となっている.

図-10 には、再現解析の鉛直変位と落下時間の関係

図-7 落下位置 A からの落下軌跡

表-2 再現解析に用いた解析ケース

r									
	落石岩体	斜面	落体半径 (m)	バネ係数 法線方向 _(N/m)	バネ係数 接線方向 _{(N/m})	反発係数	転がり摩擦 係数 ^(落体形状)		
11 TH (11	安	安山岩				0.60(岩盤)	0.58		
石球1本	山	火砕岩	0.15	1.2×10^{7}	3.0×10^{5}	0.46 (モルタル)	(六角形断		
八月形	岩	崖すい				0.01	面)		
当球体	安	安山岩				0.60(岩盤)	0.41		
石场冲	山	火砕岩	0.15	1.2×10^{7}	3.0×10^{5}	0.46(モルタル)	(八角形断		
八月形	岩	崖すい						0.01	面)
当休	安	安山岩		_	_	0.24(岩盤)	0.58		
石 体 六角形	山	火砕岩	0.15	1.2×10^{7}	3.0×10^{5}	0.15 (モルタル)	(六角形断		
	岩	崖すい				0.01	面)		
岩体	安	安山岩				0.24 (岩盤)	0.41		
	山	火砕岩	0.15	1.2×10^{7}	3.0×10^{5}	0.15 (モルタル)	(八角形断		
八月形	岩	崖すい				0.01	面)		

表-3 地質調査結果および岩石試験結果

岩	7	相	火砕岩	安山溶岩
湿潤密度		w(g/cm ³)	1.990	—
自然密度		n (g/cm ³)	1.948	2.594
超音波伝播速度	白伏	P 波伝播速度	1.76	3.42
V (km / sec^2)	日公	S 波伝播速度	0.97	1.69
一軸圧縮強さ	湿潤	一軸圧縮強さ	4887	—
(kN / m ²)	自然	一軸圧縮強さ	3938	68818
己诓碎座	引張強度(kN/m ²)		218	5909
归派强度	密周	度 (g/cm ³)	1.89	2.608

を示す. その落下時間の傾向は A 斜面の場合と同様に 反発係数が小さい岩体の場合により長くなる傾向にある. しかしながら,実験における落下時間が4秒程度であっ たことより, B 斜面においては岩球体の反発係数を用い た場合に,より高い再現性を有しているものと判断され る.これはA斜面の場合と逆の結果となっている.

(3) 再現解析結果

A 斜面, B 斜面の再現解析結果から, 斜面地形や性状 によって, 再現性の良い反発係数が異なることが明らか となった. これより, 反発係数の設定に関しては更なる 検討が必要である.

5. まとめ

- 落下試験体の材質及び被接触面の材質が同じであっても、落下試験体の形状で反発係数が大きく異なる.
- 2)落下試験体の材質が同じであっても反発係数は、岩 球体では質量や衝突速度が増すほど反発係数は低く

図-8 落下位置 B からの落下軌跡

図-9 A 斜面のシミュレーション結果(時系列)

図-10 B 斜面のシミュレーション結果(時系列)

なる傾向が得られ,岩体では一定の範囲内に収まる 傾向がみられた.

3)現地実験の再現解析から、斜面地形や性状によって 再現性の良い反発係数が異なることから、反発係数 の設定に関しては更なる検討が必要である。

参考文献

- 阪口秀,岩下和義,中瀬仁,本田中,西野隆之:土の 構造とメカニックス-ミクロからマクロへ、4.数値粒子 法による土の微視的挙動の追跡(その4),社団法人 地盤工学会,pp.53-58,2002.
- 2) 大町達夫,荒井靖博: 個別要素法で用いる要素定 の決め方について,構造工学論文集Vol.32A, 1986