自動開閉式ゲートの振動挙動に関する解析と模型実験

A study on vibration behavior of an Automatic Gate with an Analysis and a Validation by a model experiment

(株)北海道水工コンサルタンツ (財)河川環境管理財団 ○正員 堀江 秀亮 (Hideaki Horie)フェロー 長谷川 和義 (Kazuyoshi Hasegawa)

1. はじめに

北海道の管理する樋門は、平成17年3月末で4,800基 程度あり、その半数が1975年~1990年にかけて建設さ れたものであるため、今後、集中して改築が発生するこ とが予想される.また、維持管理費の多くが樋門の維持 管理に掛かる費用(巻上げ機・ゲートの塗装等)であるた め、樋門の維持管理費の削減が課題となっている.

このため、北海道では、建設費の低減と維持管理費の 削減や操作人の高齢化等を背景として「自動開閉式ゲート」を検討することとなった.

樋門のゲートに求められる機能は、「計画高水位以下の 水位の流水の通常の作用に対して安全な構造とする」「樋 門のゲートは、確実に開閉ができ、十分な水密性を有し、 流水に著しい支障を与える恐れのない構造とする」とさ れている。

しかし、「自動開閉式ゲート」については、上記の樋門 ゲートに求められる機能を検証したものがないため、ゲ ートの確実な開閉に不安が残る現状にある.既存の「自 動開閉式ゲート」に対し、縮小模型実験などによる性能 検討を行う必要がある.

本報告では、水路実験実施にあたりゲートの水中振動 の理論式を誘導しその妥当性を検討するとともに、実験 用ゲートの固有振動発生流速を求め、実験ケースを決定 した.

2. 自動開閉式ゲートの概要 バランスウェイト

図-1 Proto type

3. 自動開閉式ゲートの水中振動の理論解

既存の自動開閉式ゲートは,バランスウェイトを備え た振子構造になっており,その振動特性は,線形抵抗を 考慮した剛体振子として扱うことができる.すなわち,

$$I\frac{d^{2}\theta}{dt^{2}} + \beta \frac{d\theta}{dt} + \{(W - F_{1})h\cos\varphi_{1} - F_{2}\ell\cos\varphi_{2}\}\theta$$

= -(W - F_{1})hsin\varphi_{1} - F_{2}\ell\sin\varphi_{2} \qquad \cdots \qquad (1)

ただし,

- I: ゲートの水中慣性モーメント
- θ: ゲート板の鉛直軸からの回転角(ラジアン)
- β:抵抗を表す比例定数
- s: 抵抗力の着力点までの回転軸からの距離 $<math>\beta s = \beta_0$ (一定値)とする.
- $W = \sigma_1 V_1 g + \sigma_2 V_2 g$
- $F_1 = \rho V_1 g$
- $F_2 = \rho V_2 g$
- σ_1 :ステンレス部材の密度, σ_2 :フロート部材の密度
- V₁:ステンレス部材の体積, V₂:フロート部材の体積
- ρ : 水の密度
- s :回転軸を原点としゲートを平行にとった軸
- W: ゲート全体の重量
- F_1 :ステンレス部材に働く浮力
- F₂:フロートに働く浮力
- h : ゲートの重心の回転中心からの距離(一定値)
- ℓ : フロートの浮心の回転中心からの距離(一定値)

- φ_i :重心と回転軸を結ぶ線のS軸との交角(時計回り を正とすれば負値)
- φ₂: 浮心と回転軸を結ぶ線の S 軸との交角(正値であ たえる)
- *t* :時間
- 式(1)の特性式は、 $\theta = e^{\lambda t}$ とおいて、
- $\lambda^{2} + \frac{\beta_{0}}{I}\lambda + \frac{1}{I}\{(W F_{1})hcos\varphi_{1} F_{2}\ell cos\varphi_{2}\} = 0$ この式の判別式は,

$$D \equiv \left(\frac{\beta_0}{I}\right)^2 - \frac{4}{I} \{(W - F_1) h \cos \varphi_1 - F_2 \ell \cos \varphi_2\} \leq 0$$
振動が発生する条件は、

$$\left(\frac{\beta_0}{I}\right)^2 - \frac{4}{I} \{ (W - F_1) h \cos \varphi_1 - F_2 \ell \cos \varphi_2 \} < 0 \quad \cdots \qquad (2)$$

$$\theta = e^{-\frac{\beta_0}{2I}t} \left(C_1 \sin \sqrt{\frac{1}{I}} \{ (W - F_1) h \cos \varphi_1 - F_2 \ell \cos \varphi_2 \} - \left(\frac{\beta_0}{2I}\right)^2 + C_2 \cos \sqrt{\frac{1}{I}} \{ (W - F_1) h \cos \varphi_1 - F_2 \ell \cos \varphi_2 \} - \left(\frac{\beta_0}{2I}\right)^2 + t \right)$$

$$\dots \dots (3)$$

にて表される. C1, C2は未定定数. 特解は, $(W - F_1)hsin\varphi_1 + F_2\ell sin\varphi_2$

$$\theta = -\frac{(W - F_1)hcos \varphi_1 - F_2 \ell cos \varphi_2}{(W - F_1)hcos \varphi_1 - F_2 \ell cos \varphi_2}$$
 … (4)
となる. この式は、静止時のゲート開角を表す.
振動周期は、

.

$$T = \frac{2\pi}{\sqrt{\frac{1}{I}\{(W - F_1)h\cos\varphi_1 - F_2\ell\cos\varphi_2\} - \left(\frac{\beta_0}{2I}\right)^2}} \quad \dots \dots \quad (5)$$

である. 以上より、初期条件 t=0 にて、 $\theta=\theta_0$ 、 $\frac{d\theta}{dt}=0$ に対す ろ解として

$$\theta = \left(\theta_0 + \frac{(W - F_1)h\sin\varphi_1 + F_2\ell\sin\varphi_2}{(W - F_1)h\cos\varphi_1 - F_2\ell\cos\varphi_2}\right) \cdot e^{-\frac{\beta_0}{2I}t}$$

$$\times \left(-\frac{\beta_0}{2I} \cdot \frac{1}{\sqrt{\frac{1}{I}\ell(W - F_1)h\cos\varphi_1 - F_2\ell\cos\varphi_2}} - \left(\frac{\beta_0}{2I}\right)^2\right)$$

$$\cdot \sin\sqrt{\frac{1}{I}\ell(W - F_1)h\cos\varphi_1 - F_2\ell\cos\varphi_2} - \left(\frac{\beta_0}{2I}\right)^2 \cdot t$$

$$+\cos\sqrt{\frac{I}{I}}\left[(W-F_{1})h\cos\varphi_{1}-F_{2}\ell\cos\varphi_{2}\right] - \left(\frac{B_{0}}{2I}\right)$$
$$-\frac{(W-F_{1})h\sin\varphi_{1}+F_{2}\ell\sin\varphi_{2}}{(W-F_{1})h\cos\varphi_{1}-F_{2}\ell\cos\varphi_{2}}$$

を得る.この解の一般的な形は次図のようになる(減衰振 動).

$$-\frac{(W-F_1)hsin\varphi_1+F_2\ell sin\varphi_2}{(W-F_1)hcos\varphi_1-F_2\ell cos\varphi_2} \qquad \cdots$$

4. 実験ゲートの相似律に関する考察

縮率 1/λの模型を考え,以下原型に対して p,模型に対 して m の添字を付して諸量を示す.

 \cdots (7)

$$W_{p} = \lambda^{3} W_{m}, \quad F_{1p} = \lambda^{3} F_{1m}, \quad F_{2p} = \lambda^{3} F_{2m}, \quad h_{p} = \lambda h_{m}, \quad \ell_{p} = \lambda \ell_{m},$$
$$B_{p} = \lambda B_{m}, \quad I_{p} = \lambda^{5} I_{m}, \quad \theta_{p} = \theta_{m}, \quad \varphi_{1p} = \varphi_{1m}, \quad \varphi_{2p} = \varphi_{2m}$$

すなわち,模型振動周期は原型のそれの $1/\sqrt{\lambda}$ となる. 次に,流れの相似則としてフルード数の一致をはかる ものとすると,

$$F_{rp} \equiv \frac{U_p}{\sqrt{gH_p}} = \frac{U_m}{\sqrt{gH_m}} \equiv F_{rm}$$

$$\therefore \quad U_p = \sqrt{\frac{H_p}{H_m}} \cdot U_m = \sqrt{\lambda} \cdot U_m \quad \cdots \quad (9)$$

である.

この条件で構造物の振動特性に係わるストローハル数 を調べると,

$$S_{tp} \equiv \frac{\frac{1}{T_p} L_p}{U_p}$$
$$= \frac{\frac{1}{\sqrt{\lambda} \cdot T_m} \lambda L_m}{U_p} = \frac{\frac{1}{T_m} L_m}{U_m} \equiv S_{tm} \qquad \dots \dots (11)$$

となって, 原型と模型で一致する. ただし, Lは構造物の代表長である.

5. 自動開閉式ゲートの振動周期

5-1. 振動周期の計測方法

ゲートの振動周期の計測は、下図に示すとおり角度計 (軸芯からアーム中心線上に計測棒を設置し、ゲート角度 をゲート背面の角度盤)で表示し、デジタルビデオカメラ (1秒間に29.7 コマ)で撮影した画像をPCでキャプチャー、 周期の解析を行った.

写真-1 Model type

_____ 写真-2 Proto type

5-2. 振動周期の検討

振動周期の検討は、模型の相似性と理論解の確認を行うため、表-1に示す4水位で実施した.

振動周期は、各水位3回計測し、その平均値を用い、 各水位におけるゲートの減衰振動周期とした.

また,減衰振動周期の測定結果から,包絡線を作成し 振動モーメントに対する抵抗係数を求めた.

以下に,振動周期の計測一覧と代表的な検討の結果を 示す. 表-1 周期検討ケース一覧

	Proto type (フロート有)	Model type_1 (フロート有)	Model type_2 (フロート無)
	0cm	0cm	0cm
水		ゲート 1/2	ゲート 1/2
		51cm	51cm
Sar		ゲート水没	ゲート水没
땪		82cm	82cm
		アーム水没	アーム水没
		120cm	120cm

図-3 Proto type_水深Om

平成20年度 土木学会北海道支部 論文報告集 第65号

5-3. 理論解の検証

理論解の検証は、ゲートの製作図に基づき各ゲートの 慣性モーメントを求め、中空における減衰振動の周期解 から、減衰係数を算出し、ゲートの水中振動周期を求め 検証を行った.

実際の実験機である Model type_1 のゲートは, アーム 水没実験(図-5)で振幅しなかったため, Model type_2 で実 測した水中振動周期を Model type_1 における水中振動周 期とし, 固有振動発生流速を求めた.

固有振動発生流速の算出に当たり,ゲートの形状が複 雑であり厳密なストローハル数の算出は不可能であるた め,一般的に用いられている 0.2 を用いた.

渦発生体は、ゲート全体の高さと、流水に直接作用す る長さとした.

			原型	模型	原/模	理論比
索古田期	T	実測	3.73 秒	2.60 秒	1.435	$\sqrt{\lambda} = 1.414$
(空中回翔		理論				
空中減衰係数	$\frac{\beta_{\scriptscriptstyle 0a}}{r}$	実測	0.119 ⁻¹	0.190s ⁻¹	0.626	$\frac{1}{\sqrt{\lambda}} = 0.707$
	1,	理論				
	I_a	実測	233.69	10.847	21.54	
頂性モーメント		理論	223.31	7.548	29.58	
枠全体重量	W	実測	3343.96N	475.79N	7.03	$\lambda^3 = 8$
枠全体浮力	F_1	実測	460.98	67.94N	6.79	$\lambda^3=8$
フロート浮力	F_2	実測	365.67	44.14N	8.28	$\lambda^3 = 8$
	h	実測	0.187m	0.092m	2.03	λ=2
	l	実測	1.013m	0.482m	2.10	λ=2
水中		実測				$\sqrt{\lambda} = 1.414$

表-2 原型-模型の諸量の関係

表-3 固有振動周期一覧

\sim		Proto type	/	Model type-1	Model type-2	
		(フロート有)		(フロート有)	(フロート無)	
重量		341.22kg	重量	48.550kg	48.160kg	
体積		0.084352	体積	0.011437	0.006933	
空 中	実測 T _{sp}	3.78	実測 T _{am}	2.63	2.74	
	I_{ap}	233.69	Iam	10.847	10.843	
	β_{0ap}	7.468	β_{0am}	6.122	5.328	
	β_{0ap}/I_{ap}	0.032	β_{lam}/I_{am}	0.564	0.491	
水中	I_p	262.465	I_m	10.977	10.923	
	D	-176.03	D	-15.76	-36.00	
	評価	振動	評価	振動	振動	
	T_p	7.712				
	\hat{T}_{p}	5.45	\hat{T}_m	5.24	3.46	
	Model typ	pe-2(フロート無)実測	T_m	6.30		
	Model ty	pe-2(フロート無)	β_m / I_m	0.644		
		-	I _m '	11.637	10.923	
		-	Ď	-15.497	-33.527	
		-	評価	振動	振動	
		-	\hat{T}_m	5.46	3.48	
	固有振	動発生流速(D _m =1.11	, 0.36)	1.02, 0.33	1.6, 0.5	

6. まとめ

表-2から,原型と模型の諸量の関係は,相似関係が保 たれていると言える.

また, Proto type は,水中での計測が物理的に不可能で あったため中空での計測のみとなったが,表-3 に示すと おり理論比を考慮すると水中振動周期は Model type_1 と ほぼ同じ値が得られた.

さらに, Model type_2 で実測した水中振動周期の値を 用いて Model type_1 における水中振動周期を求めた結果 も同様の結果であり,理論式の妥当性が証明された.

しかし, Model type_1 のゲートは, アーム水没実験(図-5)で振幅しなかったが, 振動判別式では振動条件にある. 原因として考えられるものは, ゲート製作上の許容値に あると判断しているが, 現時点では不明である.

ゲート製作上の寸法許容値は、大型のものから小さい ものまで同様の値(例:扉体の高さ±10mm)で製作されて いる.

このことから、ゲート寸法を寸法許容値の範囲内で変 動すると非振動領域となり、実現象と一致する.

このため,設計図に基づく理論解がゲートの特性を表 していると判断できるため,本検討結果に基づき水路実 験を進めることとした.

謝辞

最後に,実験に対して協力して頂いた北海道建設部の 関係者に対して,心から謝意を表します.

参考文献

- 1) 水理公式集,昭和60年改訂版,土木学会編,1985
- 2) 流体力学ハンドブック,日本流体力学会(編集), 1998
- 北海学園大学工学部社会環境工学科工学実験室編集, 土木材料実験I工学基礎の部,2006年版
- 4) ダム・堰施設検査要領(案) 同解説,社団法人 ダム・ 堰施設技術協会,1997年10月発行