開水路急拡部における組織渦の生成に関する研究

Vortex formations around an adrupt expansion in an open channel flow

北海道大学工学部	○学生員	加藤宏隆	(Hirotaka Kato)
北海道大学工学研究科	正員	清水康行	(Yasuyuki Shimizu)
北海道大学工学研究科	正員	木村一郎	(Ichiro Kimura)

1. まえがき

私たちが生活する自然界では、渦を伴う流れが数多く 存在している。例えば、堤防・防波堤のような障害物や 急拡部を通過した流れは、大規模な組織渦を生成し、特 に水路幅に対して水深が小さい場合には、この渦は二次 元的な乱れを持った渦としてみなすことが出来る。この ような渦が発生することにより、航路の妨害・河床の侵 食等の問題が発生する。自然河川は、水の輸送・航路と しての機能や生物学的な価値を持っているが、組織渦の 生成によってしばしばこれらの機能が損なわれる。また、 流れ場の変化は、土砂の輸送や沈殿、混合にも影響を与 える。そのため、河川管理を行う上で、人間の干渉によ って流れが変化した場合に生じる影響をある程度の精度 を持って予測することが必要となる。

本研究で対象とする乱流は2つの重要な特徴をもつ。 1つは、水深が水路幅に対し5%以下の非常に浅い流れ 場を対象にしていることである。そのため、大規模な乱 れはおおよそ二次元としてみなすことができる。2つ目 は、流れの剥離が生ずる点である。逆向きの圧力勾配に よって、主流は側壁から分離され、循環流が発生する領 域や、急拡部から下流方向に組織渦の通り道を引き起こ す。これらの現象を模式的に表したものが図-1 であり、 一般的に大きな循環流が2つ発生する。ここでは、それ ぞれの渦を一次循環流、二次循環流と呼ぶこととする。 また、急拡部の先端から発生した小さな渦が一次循環流 と接触することによって急激に渦スケールが増加する Scale jump という現象が知られている。

これらの現象に対し、Harmenら¹⁾²⁾は、2006年に単純 な急拡を伴う比較的浅い開水路流れについてPIV法を用 いた実験を行っている。また、彼らによって三次元LES 法を用いた数値解析が行われており、実験値とほぼ適合 する結果を得ている。しかしながら、LES法を用いた数 値解析は非常に計算負荷が大きく、計算負荷を軽減し、 より経済的に計算を行うことは、工学上有意義であると 考える。そこで本研究では、水深積分型修正ゼロ方程式 モデルを用いて数値解析を行い、その適用性について検 討を行う。このモデルは木村らによって開水路せん断混 合層の流れ構造に対する適用性が確認されている³⁾。検 証実験は、上記したHarmenらによる実験を採用する。

2. 数値解析モデル

(1) 基礎式

本研究で用いる基礎式は開水路水深積分型二次元モ デルであり、次のように記述される。

[連続式]

$$\frac{\partial h}{\partial t} + \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} = 0 \tag{1}$$

[x 方向運動方程式]

$$\frac{\partial M}{\partial t} + \frac{\partial \beta \mu M}{\partial x} + \frac{\partial \beta \nu M}{\partial y} + gh\frac{\partial h}{\partial x} = gh\sin\theta - \frac{\tau_{bx}}{\rho} + \frac{\partial (-\overline{u'v'h})}{\partial x} + \frac{\partial (-\overline{u'v'h})}{\partial y} + v[\frac{\partial}{\partial x}(h\frac{\partial u}{\partial x}) + \frac{\partial}{\partial y}(h\frac{\partial u}{\partial y})]$$
(2)

[y 方向運動方程式]

$$\frac{\partial N}{\partial t} + \frac{\partial \beta \mu N}{\partial x} + \frac{\partial \beta \nu N}{\partial y} + gh\frac{\partial h}{\partial y} = -\frac{\tau_{by}}{\rho} + \frac{\partial (-u'v'h)}{\partial x}$$
(3)
$$+ \frac{\partial (-\overline{v'^2}h)}{\partial y} + v[\frac{\partial}{\partial x}(h\frac{\partial v}{\partial x}) + \frac{\partial}{\partial y}(h\frac{\partial v}{\partial y})]$$

底面摩擦応力については次のように評価した。

$$\tau_{bx} = \frac{f\rho u}{2} \sqrt{u^2 + v^2}; \tau_{by} = \frac{f\rho v}{2} \sqrt{u^2 + v^2}$$
(4)

ここに、f は摩擦係数であり、局所的なレイノルズ数 Re'≡uh/vの関数として次のように与えられる。

$$f = \frac{6}{R_{e'}}, (R_{e'} \le 430)$$
(5a)

$$\sqrt{\frac{2}{f}} = A_s - \frac{1}{\kappa} \left[1 - \ln\left(R_e' - \sqrt{\frac{f}{2}}\right) \right], (R_e' > 430)$$
(5b)

ここに、κはカルマン定数(=0.41)であり、A_sは滑面 乱流で一般的に用いられる定数 5.5 を用いた。

(2) 乱流モデル

a) レイノルズ応力の構成則

一般的に0-方程式モデルで用いられる構成則は線形モ デルであり、次のように表される。

$$-\overline{u_i'u_j'} = v_t \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right) - \frac{2}{3}k\delta_{ij}$$
(6)

ここに、kは水深平均乱れエネルギーであり、 δ_{ij} はクロ ネッカーのデルタである。kについては次のNezu & Nakagawaの半理論式を考える。

$$\frac{k}{u_*^2} = 4.78 \exp\left(-\frac{2z}{h}\right) \tag{7}$$

ここに、z は底面をゼロとした鉛直方向の座標である。 上式を水深積分して得られる次の式でkを評価する。

$$k = \gamma_k {u_*}^2, \gamma_k = 2.07 \tag{8}$$

一方、二次の非線形項を導入した構成則は Yoshizawa の 表現によると

$$-\overline{u_i u_j} = v_i S_{ij} - \frac{2}{3} k \delta_{ij}$$
$$-\lambda_p \frac{u_*^3}{h} v_i \sum_{\beta=1}^3 C_\beta \left(S_{\beta ij} - \frac{1}{3} S_{\beta \alpha \alpha} \delta_{ij} \right)$$

(9)

となる。ここに、v_tとは渦動粘性係数である。また、

$$S_{1ij} = \frac{\partial U_i}{\partial x_{\gamma}} \frac{\partial U_j}{\partial x_{\lambda}}$$

$$S_{2ij} = \frac{1}{2} \left(\frac{\partial U_{\lambda}}{\partial x_i} \frac{\partial U_j}{\partial x_{\gamma}} + \frac{\partial U_{\gamma}}{\partial x_j} \frac{\partial U_i}{\partial x_{\gamma}} \right)$$

$$S_{3ij} = \frac{\partial U_{\gamma}}{\partial x_i} \frac{\partial U_{\gamma}}{\partial x_j}$$
(10)

であり、C₁,C₂,C₃はモデル係数である。上式はGatski& Spezialeの表現と等価であることが示されている。

モデル係数C₁,C₂,C₃についてはストレインパラメータ SとローテイションパラメータΩの関数とし、単純せん 断流との比較から同定された次の関数形を用いる。

$$C_1 = 0.4 f_M(M), C_2 = 0, C_3 = -0.13 f_M(M)$$
(11)

$$f_M(M) = \frac{1}{1 + 0.02M^2}, M = \max[S, \Omega]$$
(12)

$$S = \lambda_p \frac{h}{u_*} \sqrt{\frac{1}{2} \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i}\right)^2}$$
(13)

$$\Omega = \lambda_p \frac{h}{u_*} \sqrt{\frac{1}{2} \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right)^2}$$
(14)

ここに λ_pは定数であり、1.07とする³⁾。

b)渦動粘性係数

0-方程式モデルの渦動粘性係数については、従来の研究では渦動粘性係数v_tそのものを定数で与える場合、次元を考慮して代表長さ、代表流速の積に比例すると仮定

する方法がある。本研究では後者のモデルとして局所的 な水深hと摩擦速度u*の積に比例すると仮定した次のよ うな表現を用いる。

$$y_t = \alpha h u_* \tag{15}$$

摩擦速度u*は摩擦係数fを用いて次のように表される。

$$u_* = \sqrt{\frac{f}{2}(u^2 + v^2)}$$
(16)

αは一般に定数とされ、0.1~0.3 程度の値が既往の研 究では用いられ、比較的良好な計算結果を得ていること から、α=0.2を用いる。しかしながら、αを定数とした モデルはRealizabilityを局所的に破綻させ、負の乱れ強さ を生成するなどの不合理な結果を招くことがある。これ を回避するための一つの方法として、二方程式モデル等 で試みられているのと同様に、αをストレインパラメー タとローテイションパラメータの関数とおくことを考え る。木村ら(2004)によるモデルではこの関数形を次のよ うに与えている³⁾。

$$\alpha(M) = \min\left[0.2, \frac{0.3\gamma_k\lambda_p}{1+0.09M^2}\right]$$
(17)

c)壁面近傍のモデル化

壁面の摩擦応力は対数則により評価する。また、壁面 付近の流速分布を再現するため、次の二種類の関数を渦 動粘性係数に乗ずる。

$$f_{d1} = \left[1 - \exp\left(-\frac{1}{C_{vn}} \frac{u_{*v} l_{w}}{v}\right)\right]^{2}$$
(18)

$$f_{d2} = \begin{cases} l, l_w \ge h \\ \frac{l_w}{h} \left(1 - \frac{l_w}{h} \right), l_w < h \end{cases}$$
(19)

ここに、l_w:壁面までの距離、u_{*w}:最も近い壁面における 摩擦速度、C_{vn}:定数(C_{vn}=50を用いた)である。

3.計算の条件

(1) 対象とする実験

本研究ではHarmenらの実験と同一条件で計算を行い、 結果を検証する。対象とする流れ場の概要を図-2に示す。

(2) 計算領域と計算格子

Harmenらの実験では、水路長 20.0m、水路幅 2.0m、水 深を 0.092mとし実験を行っている。流出部の水路幅b₂ は 3 ケースとも 2.0mであり、流入部の水路幅b₁は 0.5m、 1.0m、1.5mとし、流入部と流出部の幅の比b₁/b₂はそれ ぞれ 1:4、2:4、3:4 である。また、急拡部の幅d₁をd₁=b₂-b₁ で定義する。急拡部より上流側の水路長は、十分に発達 した乱流流れを確保するために 5.0mとしている。

本研究では、下流端の影響を軽減するために急拡部よ り下流側の水路長を20.0m、全水路長を25.0mとして計 算を行う。また、実験では測定周期を9.67Hzで700秒間 測定しているが、定常状態に至るまでの時間を考慮し、 10Hz で 1000 秒間の計算を行うこととする。

計算格子は、流れ方向に 370 メッシュ、流れ直角方向 に 80 メッシュとっている。メッシュ作成においては、等 比級数を用い、徐々に格子幅を増加させる方法を用いる。 流れ方向については、急拡部より下流側 5m区間を格子 幅 0.025mで等間隔に 200 メッシュ設定し、等間隔区間よ り上流側 5mに 30 メッシュ、下流側 15mに 140 メッシュ をそれぞれ最小格子幅 0.025mから等比級数を用いて設 定している。流れ直角方向についても最小格子幅 0.025m とし、d₁区間は上下から、b₁区間は下側から等比級数を 用いてメッシュ設定を行っている。メッシュ数は、1:4、 2:4、3:4 のケースについてd₁区間をそれぞれ 60 メッシュ、 50 メッシュ、30 メッシュ、b₁区間をそれぞれ 20 メッシ ュ、30 メッシュ、50 メッシュとした。

4. 結果と考察

(1) 流速分布

図-3から図-5は、実験と解析によって得られた流れ方 向の流速分布を時間平均したものを示している。図中で は、流速ゼロの等流速線を一次、二次循環流それぞれの 境界線とし、壁面との交点を付着点としている。

解析の結果は、一次循環流についてはどのケースも過 少に評価されており、二次循環流に関しては、1:4、2:4 のケースは過小に、3:4 のケースについては過大に評価 されている。これまでの研究において、1989年に行われ たGanoulis&Chu⁴⁾の実験では、水深が小さい場合に、一 次の渦の付着点は水深の増加に伴い、十分に水深が大き い場合には一時の渦の無次元量L₁/d₁=8 となることが一 般的に知られている。また、二次循環流に関しては、 Harmenらの実験によって無次元量L₂/d₁は水深の減少に 伴って増加すると報告されている。これは、水深が小さ く、一次循環流がサイズ・流量・エネルギーの面で小さ い場合には、反対向きの圧力勾配によって壁面から容易 に離れることができるためである。

比較的浅い開水路流れでは流れ構造が基本的に平面二 次元であるが、これらの研究によって組織渦の生成は水 深の影響を受けることがわかる。本研究で使用したモデ ルは水深積分型の二次元モデルであり、水深方向の影響 を考慮できないことが一次・二次循環流の付着点長さに 大きな影響を与えていると考えられる。

また、実験では水面での流速を測定しているのに対し 解析結果は水深平均の流速を表示していることも流速の 不一致の一因と考えられる。

(2) Scale jump に関する検討

Scale jump の評価を行う手法として乱れエネルギー・自 己相関係数の2つを用いる。まず、乱れエネルギーは次 式で表される。

$$k = \frac{\overline{u^2 + v^2}}{2}$$
(20)

scale jump が発生し、渦が大きくなるに従い、乱れが

増加するため、乱れエネルギーによって scale jump の程 度が評価できると考える。

また、もう1つの評価手法として自己相関係数を用い る。自己相関係数は次式で表される。

$$R = v'(X)v'(X + x)$$
 (21)

これは、波動内に含まれる周期性を探すために有用な

手段である。

これらの評価は、Harmenらの実験でscale jumpが発生 する領域として報告されている、急拡部より下流側へ x/d₁=2.0 までの領域を対象に値を算出している。乱れエ ネルギー、自己相関係数、実験による渦スケールの推移 を図-6 から図-8 に示す。ここで、乱れエネルギーの推移 を表す図-6 は対数軸を用いている。また、図-7 で用いて いるλ₁は、値を算出した各点において、隣接する自己相 関係数のピーク値までの距離を表している。

実験によれば、x/d₁=0.8 付近において 2:4 のケースで最 も顕著にscale jumpが発生し、1:4、3:4 のケースにおいて は弱いことが報告されている。これは、二次循環流が大 きく関係しており、3:4 のケースのようにh/d₁が大きい場 合には二次の渦が小さく主流に触れないことや、二次循 環流が分離し影響が弱いためである。

まず乱れエネルギーについてであるが、乱れエネルギー の最大値は各ケースほぼ同様の結果となったが、2:4、3:4 のケースはある地点を境に乱れエネルギーの急激な増加 が確認できる。一方 1:4 のケースは初期の段階での乱れ エネルギーが大きく、他の2ケースのような急激な増加 が見られない。しかしながら、ある地点で乱れエネルギ ーがピークに達した後、減衰している傾向が見られるこ とからピークの地点に至るまでの過程で scale jump が生 じていることが推測できる。

自己相関係数では、2:4 のケースにおいてx/d₁=0.4 付近 で著しい渦スケールの増加が見られる。一方で他の2ケ ースでは急激な増加が見られず、scale jumpが発生してい るのは 2:4 のケースのみであることがわかる。これは上 述のHarmenらによる実験の結果と一致するものである。 また、1:4 のケースでは急拡部直後の渦スケールが他の2 ケースに比べて大きい点でも実験値との整合性が見られ、 このことから 1:4 ケースで乱れエネルギーが初期の段階 から大きな値を示したことも説明できる。しかし、scale jumpが発生した地点が実験値に比べて急拡部に近い結 果となっており、今後これについての検討が必要である。

5.まとめ

本研究では、水路幅に対して水深が小さい場合を対照 に、循環流と scale jump の 2 つに焦点を当てて検討を行 った。その結果、scale jump については実験値とある程 度の整合性が見られ、良好な結果が得られた。一方、循 環流の生成に関しては、水深方向の影響を考慮できない 水深積分型のモデルでの再現性に限界があった。また、 循環流の再現性の低さに反して scale jump の再現性が高 かったことから、今後、循環流の生成、循環流と Scale jump の関係については二次流を考慮したモデルや三次 元での解析を行うことでの検討課題としたい。

参考文献

1)Harmen Talstra,Wim S.J.Uijttewaal&Guus S.Stelling: Emergence of large-scale coherent structures in a shallow separating flow,2006.

2)Harmen Talstra,Wim S.J.Uijttewaal&Guus S.Stelling:3D LES conputations of shallow lateral wxpansion using an immersed boundary method,Hydroscience and Engineering, 2006.

3)木村一郎.細田尚:開水路せん断混合層の流れ構造に対 する水深積分型修正ゼロ方程式モデルの適用性,水工学 論文集,vol.48,pp.673-678,2004.

4)Babarutsi,S.,Ganoulis,J.&Chu,V.H:Experimental

investigation of shallow recirculating flows, journal of Hydraulic Engineering, Vol.115, N0.7, pp906-924, 1989.