PVA 短繊維混入コンクリートを部分使用した RC 版の耐衝撃性向上効果

Upgrading effects of partial use of PVA short-fiber mixed concrete on impact resistant capacity of RC slabs

(独)土木研究所寒地土木研究所耐寒材料チーム	〇正会員 安達 優(Yutaka Adachi)
(独)土木研究所寒地土木研究所耐寒材料チーム	正会員 田口史雄(Fumio Taguchi)
室蘭工業大学工学部建設システム工学科	フェロー 岸 徳光(Norimitsu Kishi)
三井住友建設(株)技術研究所土木研究開発部	フェロー 三上 浩(Hiroshi Mikami)
室蘭工業大学工学部建設システム工学科	正会員 栗橋祐介(Yusuke Kurihashi)

1. はじめに

落石覆工の頂版等に使用される RC 版部材は、過大な衝撃 外力を受け、裏面剥離や押し抜きせん断破壊により下縁かぶ りコンクリートが剥落することが懸念される.安全な社会基 盤を構築し維持するためにも、このような破壊に対して安全 性の高い RC 版部材の新設工法および補修補強工法の開発が 望まれる.

また、種々のコンクリート構造物における破壊の多くは内 部に生じる引張応力が原因であるため、内部ひび割れの対策 として、軽量かつ耐腐食性に優れる合成繊維に関する研究が 盛んに行われている. 特に, ポリビニルアルコール (PVA) 短繊維は、親水性があるためセメンペーストとの付着が良好 であり、架橋効果によるひび割れ進展の抑制効果が高いこと などが報告されている ¹⁾.

筆者らは、既往の研究において、PVA 短繊維を混入させる ことで、RC 版の押し抜きせん断耐力向上効果や耐衝撃性向 上効果が得られることを静的載荷実験および重錘落下衝撃実 験により確認してきた.しかし一方で、鋼繊維と比較して PVA 短繊維は高価であることから、少量で耐荷力向上効果を 得るための効果的な使用方法の確立が求められている. この ことから RC 版においては、押し抜きせん断破壊に対して短 繊維の架橋が効果的に発揮される部位を明確にすることが重 要と考えられる.

そこで本研究では、PVA 短繊維混入コンクリートを RC 版 の下側半断面(以下,下断面)に部分使用した場合において, 重錘落下衝撃実験により、その耐衝撃性向上効果を検証した.

実験概要 2.

2.1 試験体の概要

表-1に試験体の一覧を示す. 試験体数は, 短繊維混入断

	衣一	1 試験14	一見	
試験	# 古七注	短繊維混入率 $V_f(\%)$		衝突速度
体名	戰怕力伝	上断面	下断面	V(m/s)
Ν	任神史	0		1,2,3,4,5
F2-L	(編り近1)	0	2	1,2,3,4,5,6
F2-A	い水り返し		2	1,2,3,4,5,6

⇒->EA (+-

面を変化させた2体(全断面または下断面のみ)および短繊 維を混入しない1体の合計3体である.なお、本研究では、 短繊維の効果を明確にするため,既往の研究成果²⁾を参考に, 短繊維混入率 V_f を 2% とした.

図-1に、試験体の形状寸法および配筋状況を示す.本実 験に用いた RC 版は, 寸法が 2,000×2,000×180 mm の単鉄 筋 RC 版である.鉄筋には D16 を用い,版中央部より 150 mm 間隔で格子状に配置しており、鉄筋比は 1.1% である. 鉄筋の降伏強度は 396 MPa である. これらの鉄筋は RC 版 の4辺に配置した溝型鋼に溶接し、定着を確保した.また、 F2-L 試験体は、コンクリートの一体化を図るため、下側の短 繊維混入はコンクリートにほうき目を付け、硬化後にはサン ドブラストによる研掃を行った.

表-2に、短繊維混入の有無に対応したコンクリートの配 合を示す.実験時の圧縮強度は短繊維混入の有無に関わらず 35 MPa 程度であった.

平成20年度 土木学会北海道支部 論文報告集 第65号

					衣	- 2 -	~ > > > -	一下の配合わよい工作が	虹皮の一見		
	U.	NUC	- /-		単位量 (kg/m ³)			混和剤		フランプ	亡经济发展
V_f (Vol.%)	w/C (%)	(%)	W	С	S	G	高性能減水剤 (C×%)	増粘剤 (W×%)	(cm))土袖5虫度 (MPa)	
	0	42	41	153	364	740	1058	-	1.00	8.5	35.1
	2	45	60	170	378	1050	701	0.75	-	14.5	36.0
V = V =	= 3.0 m/s = 4.0 m/s	12 8 4 -4 12 8 4 -4		N)重	錘衝撃	έл Р		(kN)支点反: 1200 800 400 0 -400 1200 800 400 0 -400	л R	N (mm) 30 15 0 -15 30 15 0 -15	F2-L F2- 変位 δ
V = (Vfi	= 5.0 m/s inat for N)	12 8 4 -4		h				1200 800 400 0 -400	~~~~	30 15 0 -15	
V = (V)	= 6.0 m/s	12 8 4						1200 800 400		30 15	

コンクリー しの町へいトバロ炉砂座の 野 ÷

F2-L and F2-A)

-400 5 10 15 -5 0 time (ms)

(a) 重錘衝擊力波形 (b) 支点反力波形

-10

0

0

-400

図-2 重錘衝撃力,支点反力および変位に関する応答波形

2.2 実験方法

実験は純スパン長 1.75 m の 4 辺支持状態で実施した. な お、RC 版の四辺四隅は、貫通ボルトを用いて浮き上がりを 拘束した. また, 載荷点を RC 版の中央とし, 載荷治具には 直径 90 mm, 質量 300 kg の鋼製円柱型の重錘を用い, 所定 の高さから自由落下させ載荷した.実験は初速度および増分 速度を 1 m/s と設定して,終局に至るまで繰り返し重錘を落 下させることにより行った. なお, 本研究では RC 版が損傷 して支点反力が大きく低下し,明瞭な押し抜きせん断破壊が 生じた時点を終局状態と定義した.

測定項目は、載荷荷重 P (以下, 重錘衝撃力), 合支点反 力(四辺の反力の合算値,以下,支点反力),載荷点変位 δ(以 下,変位)の各応答波形である.実験終了後には,RC版の 裏面に発生したひび割れをトレースしてひび割れ分布図を作 成した. また, RC 版を中心線に沿って切断し, 版中央部切 断面における押し抜きせん断ひび割れの発生状況を観察した.

3. 衝擊荷重載荷実驗結果

3.1 時刻歷応答波形

図-2に,各試験体の重錘衝撃力 P,支点反力 R および 変位 δ に関する応答波形を示す. なお,本実験において N 試験体は衝突速度 V=5m/s で, F2-L, F2-A 試験体は衝突速 度 V=6m/s で押し抜きせん断破壊により終局に至った. こ こでは、V=3~6m/s までの結果について、衝突速度毎に各 試験体の結果を比較する形で示す.

0

-20 0 20 40 60 80

time (ms)

(c) 変位波形

-15

20

10

time (ms)

30

重錘衝撃力波形 P は, V=4 m/s では, いずれの試験体に おいても大小2つの卓越した波から構成される波形性状を 示した. また, V=5 m/s 以降では 2 波目の振幅が減少し, 各 RC 版の最終衝突速度 V_{final} において 2 波目はほとんど 消失している. これは RC 版に押し抜きせん断面が形成され, 塑性化が進行したことによるものと考えられる.

支点反力波形 R は, V=4 m/s においては, 1) 周期が 9 ms 程度の三角波およびそれに付随する正弦減衰波と,2)周期が 3 ms 程度の高周波成分が合成された波形性状を示している. この時点まではいずれの試験体もほぼ類似した波形性状を示 した. V=5 m/s 以降では、N 試験体が V=5 m/s で、 短繊維 を混入した試験体では V = 6 m/s の最終衝突速度 V_{final} にお いて振幅が大幅に低下し、同時に高周波成分も消失する傾向 にある.

変位波形 δ は、V=4 m/s では、いずれの試験体において も正弦半波状の波形を示した.最大応答後,変位 δ はほぼ零 に復元していることより、いずれの試験体も未だ弾性状態に あると推察される. また, F2-L 試験体の V=5 m/s において は,変位 δ が零以下を示している. さらに, RC 版上面には

図-4 実験終了後における RC 版下面のひび割れ分布性状

載荷点から四隅に進展するひび割れが認められたことから, 下断面のみに短繊維混入コンクリート用いた場合には,版中 央が上方に浮き上がるモードを示し,他の試験体に比べてよ り健全であることがうかがわれる. V=5 m/s 以降では,Vの 増加とともに最大振幅が大きくなり,各 RC 版の最終衝突速 度 V_{final} では変位が復元せずに大きく残留している.

3.2 各種応答値と衝突速度との関係

図-3に,各試験体の (a) 最大重錘衝撃力 P_{ud} , (b) 最大 支点反力 R_{ud} ,および (c) 最大変位 δ_{ud} と衝突速度 V との関 係を示す.

最大重錘衝撃力 P_{ud} は,各試験体ともに $V=4\sim5$ m/s まで は、Vの増加に伴って増大している. F2-L, F2-A 試験体は V= 6 m/s で最大重錘衝撃力 P_{ud} が低下し終局に至った.一方 で、N 試験体は、V=5 m/s において P_{ud} が増加し終局に至 った.これは、既往の研究²⁾における短繊維無混入試験体の 結果と同様であり、RC 版が脆性的に破壊した場合の特徴と 考えられる.

最大支点反力 R_{ud} は、いずれの試験体も V=4 m/s までは、 衝突速度 V の増加とともに増大した. F2-L, F2-A 試験体で は最大重錘衝撃力 P_{ud} はほぼ同様の値を示したが、 R_{ud} は V = 2 m/s 以降に両者の差異が拡大し始め、V=5 m/s において F2-L 試験体は増加したのに対して、F2-A 試験体では低下し ている.このことから、F2-A 試験体よりも F2-L 試験体の方 が動的耐力が大きく、同一衝突速度ではより健全であること が分かる.

最大応答変位 δ_{ud} は、衝突速度 V = 4 m/s までは、いずれの試験体も衝突速度 Vの増加とともにほぼ線形に増大している.従って、短繊維混入および混入断面の相違に関わらず、 V = 4 m/s まではいずれの試験体も弾性的な挙動を示している

図-5 実験終了後における中央部切断面の ひび割れ分布性状

と考えられる. V=5 m/s において, N 試験体は最大応答変位 δ_{ud} が急激に増大し,終局に至った. F2-L, F2-A 試験体では V=5 m/s までほぼ同様の挙動を示し, V=6 m/s において終局 に至ったが,最大応答変位 δ_{ud} は F2-L 試験体の方が F2-A 試験体よりもいくぶん小さくなっている.

以上より,短繊維をRC版の下断面のみに混入させた場合の耐衝撃性向上効果は,全断面に混入させた場合と同程度か, それ以上に期待できるものと考えられる.

3.3 ひび割れ分布性状

図-4に、実験終了後における RC 版裏面のひび割れ分布 性状を示す. ひび割れは短繊維を混入した F2-L, F2-A 試験 体の方が N 試験体よりも多数発生した. また, N 試験体は 多くのコンクリート片が剥落したのに対し, F2-L, F2-A 試 験体ではコンクリートの大きな剥落は見られない. これは, 短繊維の架橋効果によりひび割れが分散したことおよび剥落 が抑制されたことに加え,繰り返し載荷の回数および衝突速 度 V が大きいことによるものと考えられる. なお, F2-L 試

平成20年度 土木学会北海道支部 論文報告集 第65号

表-4 静的および動的耐力に関する実験結果の一覧

験体と F2-A 試験体を比較すると、ひび割れの分散性は F2-L 試験体の方が良好であり、また、円形状ひび割れ周辺の損傷 程度も軽微になっていることが分かる.以上から、ひび割れ 性状からも F2-L 試験体が F2-A 試験体よりも健全であるこ とがうかがわれる.

図-5に、実験終了後における RC 版の中央部切断面のひ び割れ性状を示す.いずれの試験体も載荷点から支点側に向 かって斜め下方に押し抜きせん断面が形成されている.その 他に、かぶり部分および主鉄筋に沿ったひび割れが顕著に認 められるが、かぶり部分のひび割れは短繊維を混入した試験 体でより顕著であり、主鉄筋に沿ったひび割れは N 試験体 でより顕著である. 重錘の貫入量は短繊維を用いた試験体で 小さく、押し抜きせん断面が RC 版上面のより高い位置から 形成されている.下縁かぶりコンクリートに発生した斜めひ び割れの角度は、有効高さ部分の角度よりも緩く、その傾向 は短繊維を混入した試験体でより顕著であるが、短繊維混入 断面の違いによる差違は明確でない.また、F2-L 試験体では 載荷位置のコンクリートが圧懐しており、エネルギーを吸収 した可能性がある.

3.4 静的,動的耐力および動的応答倍率

表-4に各試験体の衝撃載荷実験および別途実施した静 載荷実験の結果を一覧にして示す.なお,動的耐力には,3.2 節の考察および既往の研究^{2),3)}に基づき各 RC 版の最大支点 反力 R_{ud} の結果を用いた.動的応答倍率は動的耐力 R_{ud} を静 載荷実験から得られた静的耐力 P_{us} で除すことで評価した. 入力エネルギー比および耐力比は,各 RC 版の入力エネルギ ーや動的耐力を N 試験体の結果で除したものである.

図-6に、各試験体の(a)入力エネルギー比、(b)耐力比 および(c)動的応答倍率を示す。図(a)より、RC版の入力エ ネルギーは短繊維を下断面または全断面に混入させること で1.4倍程度向上することが分かる。図(b)より、耐力比は F2-L、F2-A試験体においてそれぞれ1.4、1.1倍程度向上し、 下断面のみに短繊維を混入させた方が大きい。図(c)より、 動的応答倍率はN、F2-L、F2-A試験体においてそれぞれ2.0、 2.9、1.9程度であり、短繊維を全断面に混入させた場合より、 下断面のみに混入させた方が大きくなり、耐力比と同様の傾 向を示した. このように, F2-L 試験体の方が F2-A 試験体 よりも耐力比や動的応答倍率が大きいのは, 載荷点周辺での 局部損傷が F2-L 試験体の方で顕著であることから, 入力エ ネルギーが吸収され, 版への入力エネルギーが小さくなった ことが一要因だと考えられる.

4. まとめ

本研究では、経済的合理性を追求するため、PVA 短繊維混 入コンクリートを RC 版の下断面のみに使用した RC 版の 耐衝撃性状を4辺支持条件の下,重錘落下衝撃実験により検 討した.なお、短繊維混入率は2%とした.本研究の範囲 内で得られた結論を以下に要約する.

- 1) PVA 短繊維が下断面に混入されている試験体では, RC 版 裏面かぶりコンクリートの剥落が抑制される.
- 2) 入力エネルギーの観点から RC 版の耐衝撃性能を評価すると、短繊維を下断面または全断面に混入させることで無混入の1.4 倍程度まで耐衝撃性は向上する.
- 3) 動的耐力は, 短繊維を下断面または全断面に混入させることにより, 無混入と比べてそれぞれ 1.4, 1.1 倍程度向上した.
- 4)動的応答倍率は、短繊維を下断面または全断面に混入させることで、それぞれ 2.9、1.9 程度となった。
- 5) 下断面のみに短繊維を混入することは、効率的な入力エネ ルギーの吸収につながり、全断面に混入するよりも耐衝撃 性に対して合理的となる可能性がある.

参考文献

- コンクリート工学協会:高靱性セメント複合材料を知る・ 作る・使う,2002.
- 2) 栗橋祐介,岸 徳光,三上 浩,田口史雄: PVA 短繊維混 入による4片支持 RC版の耐衝撃性向上効果に関する実験 的研究,構造工学論文集, Vol.52A, 2006.
- 3) 岸 徳光,三上 浩,松岡健一,安藤智啓:静載荷時に曲 げ破壊が卓越する RC 梁の耐衝撃設計法に関する一提案, 土木学会論文集,No.674/I-51, pp.177-190, 2000.