RC橋脚の非線形動的応答解析に及ぼす粘性減衰の取り扱いの影響

Effects of treatment of viscous damping for nonlinear dynamic response analysis of RC pier

北武コンサルタント株式会社	ΤĒ	員	坂口淳一	(Junichi Sakaguchi)
北武コンサルタント株式会社	正	員	笠井尚樹	(Naoki Kasai)
株式会社ドーコン	正	員	小林竜太	(Ryuta Kobayashi)
独立行政法人土木研究所寒地土木研究所	正	員	三田村浩	(Hiroshi Mitamura)

1.はじめに

近年,橋の耐震性能照査を行うにあたり,部材の非線 形特性を考慮した動的応答解析による照査を行うことが 一般的となっている.

橋の非線形動的解析において,部材の粘性抵抗による 減衰,振動エネルギーの地下逸散減衰など,部材の非線 形挙動に伴う履歴減衰を除けば,振動系の減衰性能は解 析上,粘性減衰マトリクスによって考慮される.粘性減 衰マトリクスとしては,質量比例型や剛性比例型, Reyleigh型など幾つかの代表的なものがある¹⁾が,中 でも,数値計算の安定性などの観点で,道路橋の設計に おいては Reyleigh型粘性減衰マトリクスが用いられる のが一般的である.しかし,Reyleigh型粘性減衰の設定 によっては,非線形動的応答解析結果に違いが見られる 場合があるため,これらの現象を把握する必要があるこ とが指摘されている²⁾.

そこで本検討では,1 基の橋脚とそれが支持する上部 構造からなる振動系を対象として,柱基部の最大応答断 面力,慣性力作用位置の最大応答変位に着目し, Reyleigh型粘性減衰の第2基準モードをパラメータとし て,その選択による動的解析の応答値の差異について検 討を行った.

2. 検討概要

2.1 検討対象構造物

図-2.1 に,本検討に用いる鉄筋コンクリート製橋脚の 構造図を示す.本検討に用いる構造物は,図に示すよう な,鋼管杭基礎を有する鉄筋コンクリート製の壁式橋脚 である.橋脚は,可動支承によって上部構造を支持して いることとし,死荷重反力として 1660kN を,橋軸方向 の分担重量として可動支承を介して伝わる摩擦力 250kN (ただし摩擦係数 0.15)を解析上考慮した.

2.2 解析モデルと部材のモデル化

本検討においては,図-2.1 に示す構造物の橋軸方向を 対象についてモデル化を行い,非線形域における動的解 析の応答値について検討を行う.

図-2.2 に解析モデルを示す.図に示すように,橋脚は 2 次元多質点系線材モデル(骨組要素モデル)にモデル化 した. 柱部について,基部から塑性ヒンジ長 0.95mの 区間についてはその中心に非線形回転ばねを設け,回転 ばねから塑性ヒンジ区間上下両端の節点までを剛体要素 とした.

橋脚柱部材について,柱基部の塑性ヒンジ区間には, 曲げモーメント-回転角関係(M- 関係)を,それ以外の 区間には,曲げモーメント-曲率関係(M- 関係)を適用 した.

塑性ヒンジ部の M- 関係を図-2.3 に示す.塑性ヒン ジ区間の M- 関係とそれ以外の区間の M- 関係につい ては,部材断面のコンクリートのひび割れ時,軸方向鉄 筋の降伏時,終局時を考慮した,トリリニア型の非線形 モデルを与えた.なお,塑性ヒンジ以外の区間には,柱 基部の M- 関係を用いて,一様の曲げ性能としてモデ ル化した.

解析モデルのフーチングについては剛体要素とした. 杭基礎 - 地盤系については,表-2.1 に示す集約ばねとし てモデル化した.

2.3 入力地震波

本検討に用いる入力地震波は,道路橋示方書(V 耐震 設計編)・同解説¹⁾に記載されている 種地盤のタイプ 地震動加速度波形3波を用いた.

2.4 解析ケース

本検討では, Reyleigh 型粘性減衰の取り扱いによる, 動的解析の応答値の違いを検討するために, Reyleigh 型 粘性減衰の第2基準モードをパラメータとして,表-2.2 に示す6ケースについて検討を行った.

表-2.3 に,対象橋脚の固有値解析結果をまとめる.また図-2.4 に,6 ケースの減衰定数と固有周期の関係を示す.

表-2.2 検討ケース

	Reyleigh型減衰 第1基準モード	Reyleigh型減衰 第2基準モード	
ケース1		2次モード	
ケース2	1次モード	3次モード	
ケース3		4次モード	
ケース4		5次モード	
ケース5		6次モード	
ケース6		7次モード	

表-2.3 対象橋脚の固有値解析結果

モード	振動数 (Hz)	固有周期 (sec)	刺激係数	減衰定数
1	2.91	0.344	20.990	0.17167
2	11.35	0.088	13.370	0.14678
3	33.33	0.030	-2.096	0.07239
4	76.31	0.013	0.446	0.04256
5	140.99	0.007	0.103	0.02559
6	249.54	0.004	0.020	0.02082
7	414.40	0.002	0.005	0.02014

3. 解析結果

3.1 塑性ヒンジ部の最大応答曲げモーメント

各ケースの塑性ヒンジ部の最大応答曲げモーメントを 図-3.1 に示す.図中には,非線形回転ばねの最大応答値 と,非線形回転ばねに接している剛体要素材端の,非線 形回転ばね位置の節点の応答値を示した.なお,ここに 示す応答値は,先述の地震波3波による動的応答解析結 果の平均値である.また,非線形回転ばね要素に用いて いる終局曲げモーメント Mu,最外縁軸方向鉄筋の降伏 曲げモーメント My,コンクリートのひび割れモーメン ト Mc の計算値を記した.

図からわかるように,非線形回転ばねの最大応答値は, Reyleigh 型減衰の第2基準モードの選択に関らず,ほぼ 同じ値となっている.これに対して,剛体要素材端の最 大応答値は,Reyleigh 型減衰の第2基準モードが2次モ ードや3次モードなどの低次の場合ほど,非線形回転ば ね要素に生じる応答値を大きく超える応答が生じている. このとき,非線形回転ばね要素の応答値との差異は,第 2基準モードとして高次のモードを選択するほど縮まり, 剛体要素の応答値が,非線形ばね要素の応答値に収束す る傾向が見られた.

動的解析から得られたそれぞれのケースの曲げモーメ ントの最大応答値と,後述のせん断力および変位の応答 値を表-2.3 にまとめた.図-3.1 からも読み取れるが,非 線形回転ばねの曲げモーメントの最大応答値は,全ての ケースについて,図-2.3 中に示した降伏モーメントと終 局モーメントの間の範囲の値となった.これに対して, 剛体要素の応答値は,非線形回転ばねに与えた終局モー メントの値を超える応答を生じた.

図-3.1 塑性ヒンジ部の最大応答曲げモーメント

表-3.1 各ケースの最大応答値一覧

	最大応答曲	げモーメント 最大応答		是大応答恋位
	非線形回転ばね	剛体要素材端	せん断力	取八心古文位
	(kNm)	(kNm)	(kN)	(m)
ケース1	8834.0	12623.1	2310.3	0.080
ケース2	8848.3	9930.8	2073.5	0.103
ケース3	8853.5	9205.8	2015.8	0.114
ケース4	8855.2	8973.0	2004.3	0.118
ケース5	8855.5	8907.4	2014.3	0.118
ケース6	8855.6	8884.6	2017.7	0.119

3.2 塑性ヒンジ部の最大応答せん断力

各検討ケースの塑性ヒンジ部の最大応答せん断力を 図-3.2 に示す.図に示したせん断力は,非線形回転ばね に接している剛体要素に作用するせん断力の応答値であ る.

図からわかるように, Reyleigh 型減衰の第2基準モードが低次の場合ほど, せん断力の最大応答値が大きくなる傾向が見られた.このように, Reyleigh 型減衰の第2 基準モードの選択によって, 部材のせん断力の最大応答値に差異が見られるのは, 前節で述べた剛体要素の曲げ モーメントの最大応答値が,低次モードで大きくなることと関連していると考えられる.すなわち, 部材要素の

応答せん断力は,その要素の両端に作用する曲げモーメ ントの値から算出されるため,剛体要素に作用する曲げ モーメントが大きい低次のモードを第2基準に選んだケ ースで,せん断力の応答値も大きくなる傾向になったと 考えられる.

3.3 慣性力作用位置の最大応答変位

各検討ケースの慣性力作用位置の最大応答変異を図-3.3 に示す. Reyleigh 型減衰の第2基準モードを高次に するほど,慣性力作用位置の最大応答変位は大きくなり, 一定値に収束する傾向が見られた.

4.まとめ

本検討では,道路橋の動的解析を行う際に,構造物の 粘性減衰を考慮するために用いられる Reyleigh 型粘性 減衰の,第2基準モードの選択による動的解析の応答値 の差異について検討を行った.

柱基部の曲げモーメントとせん断力の最大応答値,慣 性力作用位置の最大応答変位に着目して検討を行った結 果,Reyleigh型粘性減衰の第2基準モードとして低次の モードを選んだ場合に,部材要素に作用する断面力を大 きく,変位を小さく評価する傾向が確認された.これに 対して高次のモードを選び,いわゆる質量比例型の粘性 減衰に近づけていくと,部材の断面力および変位は,一 定値に収束していく傾向が確認された.

参考文献

- 日本道路協会:道路橋示方書(V耐震設計編)・同解説, pp. 289-348, 2002.
- 小倉祐介,運上茂樹:非線形動的解析における粘性減 衰のモデル化に関する一考察,第7回地震時保有耐 力に関するシンポジウム講演論文集,pp.155-162, 2004.