損傷部材を用いた鋼斜張橋タワーの地震応答性状

Seismic Response of Steel Tower of Cable-stayed Bridge with Damaged Beam Segment

北海道大学大学院工学研究科 北海道大学工学部 北海道大学大学院工学研究科 北海道大学大学院工学研究科 F 会員 林川俊郎 (Toshiro Hayashikawa)
学生員 田中寿弥 (Toshiya Tanaka)
正会員 松本高志 (Takashi Matsumoto)
正会員 何興文(Xingwen He)

1. まえがき

斜張橋は、塔から斜めに張られたケーブルにより補剛 桁を吊る構造形式である。その構造形式ゆえ設計の自由 度が大きく、経済的な設計、合理的な架設、多様な景観 設計が可能である¹⁾。しかし、斜張橋はその複雑な構造 形式から、地震に対して非常に複雑な振動系を呈するこ とになる。そのため、1995 年の兵庫県南部地震のよう な大規模地震に対する、斜張橋の動的解析を用いて耐震 照査を行い、その結果を耐震設計に反映させることが望 ましいとされている²⁾。

近年、想定し得る大地震に対して構造物の全ての部材 が損傷を受けることなく、健全性を保つことのできる耐 震設計は困難である。一部の部材損傷を許すことにより 主要部材の損傷を和らげ、耐震性能を確保することが求 められている。すなわち、地震による構造物への入力エ ネルギーを損傷箇所とする特定の部材に集中させ、他の 箇所よりも早期に塑性化させる。これにより、塑性化を 起こしやすい構造物の基部などの変形を弾性領域に抑え、 構造物の耐震性能を保つことが可能であると考えられる。

本研究では、断面内部に垂直補剛材を有する斜張橋鋼 製タワーを3次元立体骨組構造にモデル化し、比較的取 替えが容易な水平梁を損傷部材として考え、弾塑性有限 変位動的応答解析法を用いて解析を行う。既往の研究よ り、水平梁の両端を損傷部材とした場合、最も良い耐震 性能が確認されている³⁾。そこで、その箇所に低降伏点 鋼やフランジ厚の小さい断面を用いることが、斜張橋タ ワーの地震時応答性状にどのような影響を与えるか比較 検討する。

2. 解析モデル

2.1 タワーモデル

本研究では、ファイバー要素により3次元骨組構造に モデル化された、北海道岩見沢市にあるたっぷ大橋の鋼 製斜張橋タワーを基本モデルとしている。タワー形状を 図-1 に示す。タワーの寸法は、塔の高さ68m、塔頂部 の塔柱間隔13m、塔基部の塔柱間隔18m、水平梁は塔 基部から高さ48mの部分に取り付けられ、鋼材には SM490Yが採用されている。

一方、タワー断面は内部に垂直補剛材を用いた中空長 方形断面であり、位置により板厚と外形断面が異なる変 断面が採用されている。タワー断面は図-2、各断面寸 法の詳細は表-1 に示す。また、鋼製タワーの片側には 9本のケーブルが定着されており、解析ではそれぞれを 水平ばね要素にモデル化する。補剛材の死荷重について は、ケーブルの定着部に鉛直下向きに作用させている。 なお、補剛桁から斜張橋タワーに作用する慣性力は、補 剛桁が橋脚によって直接支持されていることから無視す る。

このタワーモデルを基本モデルとし、水平梁の両端 2.5mの部分の鋼材を SM490Y, SM400, SMA, LY100 と 変化させた解析を行う。また、水平梁の両端 2.5m の部 分のフランジ厚を変化させた解析も実施する。

図-2 タワー断面

表-1 断面諸元(単位:cm)

C.S.		Outer dimension				Stiffener dimension			
Dim.		Α	В	t_{I}	t_2	а	b	<i>t</i> ₁₁	<i>t</i> ₂₂
Tower parts		240	350	2.2	3.2	25	22	3.6	3.0
		240	350	2.2	3.2	22	20	3.2	2.8
		240	350	2.2	2.8	20	20	2.8	2.2
		270	350	2.2	2.6	31	22	3.5	2.4

2.2 地盤構造のモデル化

斜張橋では、橋脚と地盤間で生じる動的相互作用の影響が大きいため、橋脚部の地盤構造や地盤特性を無視で きない。そこで本研究では、地盤構造のモデル化として 骨組系ばねモデルにギャップ要素を加えたモデルを用い る。骨組系ばねモデルは、地盤と基礎構造物をばね - 質 量からなる質点系で表現したモデルである。この骨組系 ばねモデルにギャップ要素を加えることで、基礎の真下 部分の地盤ばねの基礎に対する引張力を無効化する。骨 組系ばねモデル、およびギャップ要素について図-3 に 示す。各層の地盤構造を表現する地盤ばねのばね定数は、 図-4,5 に示される基礎に沿った地盤と基礎の真下の地 盤状態によって求めることとする。地盤特性のモデル化 には図-6 に示す Hardin - Drnevich モデル(HD モデル)を 用いる。HD モデルの骨格曲線は次式で与えられる。

$$=G_0 /(1+| / r|), r = max/G_0$$
 (1)

ここで、*G*₀は初期せん断係数、 はせん断応力、 _{max} は最大せん断応力、 _rは基準ひずみ、 はせん断ひず みとする。また、履歴曲線は次式のように表される。

$$\pm _{m} = G_{0}(\pm _{m})/\{1 + |(\pm _{m})/2 _{r}|\}$$
(2)

ここで、(m, m)はカーブの折り返し座標とする。また、 地盤と基礎の動的相互作用は非線形ばねとダッシュポッ トによって表現される。

図-6 Hardin - Drnevich モデル

2.3 解析方法

本研究では、鋼材の降伏と幾何学的非線形性を考慮し た、はり柱要素の有限要素法と Newmark 法(=0.25) および修正 Newton - Raphson 法を併用した解析方法を 用いる。接線剛性マトリックスは材料非線形とはり柱要 素の応力 - ひずみ関係を考慮している。弾塑性有限要素 解析については剛性の応力 - ひずみ関係をバイリニア型 にモデル化し、塑性域のひずみ硬化を 0.01 としている。 基本鋼材は SM490Y を想定し、降伏応力を 355MPa、弾 性係数を 200GPa とする。さらに、損傷箇所とする水平 梁の両端 2.5m の部分には、SM490Y の他に SM400、 SMA(形状記憶合金)、LY100の4種類の鋼材を用いる場 合と、フランジ厚を 26 mmから 4 mmずつ下げた 22 mm、18 mmの 2 種類、計 6 種類で解析を行った。SM400、SMA、 LY100 の降伏応力は、順に 235MPa、160MPa、100MPa である。動的解析では、基本モデルを Case0、水平梁両 端に SM400 を用いたモデルを Case1-a、SMA を用いた モデルを Case1-b、LY100 を用いたモデルを Case1-c、水 平梁両端のフランジ厚を22mmに変えたモデルをCase2-a、

18 mmに変えたモデルを Case2-b としている。動的解析 に用いた立体骨組モデルは1要素あたりの節点数は2の はり柱要素により構成され、鋼製タワーの要素分割数は 46 とした。剛性タワーの減衰には Rayliegh 減衰を採用 し、減衰定数は1次固有振動モードの面内、面外に対し てそれぞれ2%とした。入力地震波は兵庫県南部地震に おけるJR 鷹取駅記録の3成分加速度波形を用い、N-S 成分を橋軸方向に、E-W 成分を橋軸直角方向に、U-D 成分を鉛直方向に入力した。地震波の時刻歴加速度成 分を図-7 に示す。

3. 動的応答性状

3.1 水平梁端部における曲げモーメント - 曲率関係

タワー水平梁端部における地震波入力時の曲げモーメ ント - 曲率関係を図-8 に示す。基本モデルの SM490Y 材より低い降伏点を持つ鋼材を水平梁端部に用いた場合、 降伏点が低いほど履歴ループが大きくなり、大きな曲率 を生じていることがわかる。また、フランジ厚を変えた Case2 では、フランジ厚の薄い Case2-b のほうがやや履 歴ループが大きいが、Case1 にくらべてさほど違いは見 られない。

以上より、Case1 が水平梁端部において大きい履歴ル ープを描き、Case2 よりエネルギー吸収部材としての効 果は大きいものと考えられる。

3.2 塔基部における曲げモーメント - 曲率関係

塔基部における地震波入力時の曲げモーメント - 曲率 関係を図-9 に示す。Case0 では履歴ループに幅がある のに対して、Case1 ではどのモデルにおいても弾性領域 内となっている。また、Case1 の中でも、降伏点の低い 鋼材を用いたモデルほど最大の曲げモーメントが小さく なる傾向が見られる。Case2 においては、履歴ループは 多少小さくなっているものの、弾性領域内に収まること はない。

以上より、Case1-c が最も有効なエネルギー機構を構 成しており、鋼斜張橋タワーの耐震性能を確保するのに 有効であると言える。

3.3 塔基部における時刻歴応答せん断力

塔基部における地震波入力時の時刻歴応答せん断力を 図-10 に示す。Case0 の最大せん断力は 7.64MN/m, Case1-a、Case1-b および Case1-c の最大せん断力はそれ ぞれ 5.96MN/m、4.60MN/m、3.85MN/m と降伏点の低い 鋼材を用いたモデルほど、最大せん断力が減少している。 Case2 においては、Case0 に比べてほとんど違いは見受 けられない。

以上より、塔基部におけるせん断力は、Case1-c が最 も小さく負担が少ないといえる。

3.4 塔基部における時刻歴応答鉛直反力

塔基部における地震波入力時の時刻歴応答鉛直反力を 図-11 に示す。Case0の最大鉛直反力は、40.7MN、

Case1-a、Case1-b および Case1-c の最大鉛直反力はそれ ぞれ 37.6MN、34.2MN、29.9MN と降伏点の低い鋼材を 用いたモデルほど、最大鉛直反力が減少している。

Case2 においては、Case0 に比べてほとんど違いが見受けられない。また、塔基部は、圧縮方向にはある程度耐えることができるが、引張方向に大きな力が加わるとアンカーボルトが抜ける恐れがある。このことを考慮する

平成20年度 土木学会北海道支部 論文報告集 第65号

図-11 塔基部時刻歴応答鉛直反力

と、Case1-c においては負反力がほとんど見られず、良い耐震性能が得られる。

3.5 塔頂部における時刻歴応答変位

塔頂部における地震波入力時の時刻歴応答変位を図-12 に示す。Case1 では、降伏点の低い鋼材を用いたモ デルほど、最大応答変位、応答振幅が低減されている。 Case2 では、Case0 に比べて違いはほとんど確認できな いほどである。

また、Case1 では、Case0,Case2 に比べて残留変位が 生じることが確認できる。これは、水平梁端部で大きな 履歴ループ描き、残留ひずみを生じていることが原因と 考えられる。しかし、Case1 の残留変位は、道路橋示方 書で規定される残留変位の許容値 h/100 (h:塔高)を超え るようなことはないので、耐震設計上問題はないものと 考えられる。

以上より、Case1-c は多少の残留ひずみが生じるもの の、塔頂部の最大応答変位、塔基部に発生する曲げモー メント、せん断力、鉛直反力ともに最小となり、最も有 効な対策と考えられる。

4. まとめ

本研究では、たっぷ大橋の鋼斜張橋タワーを基本モデ ルに、水平梁の両端 2.5m の部分を損傷箇所として非線 形動的解析を行い、タワーの地震応答性状について比較 検討を行った。損傷部材には、3 種類の鋼材、2 種類の フランジ厚を用いた。

水平梁端部の曲げモーメント - 曲率関係については、 端部に SM400、SMA および LY100 を用いた場合、大き な履歴ループを描くことが確認された。これにより、適 用箇所がエネルギー吸収部材として機能することが期待 される。

塔基部の曲げモーメント - 曲率関係については、水平 梁端部に LY100 を用いた場合、弾性領域内となり、応 答曲げモーメントも最も小さいことが確認される。

塔基部の応答せん断力、応答鉛直反力については、端 部に LY100 を用いた場合、最大せん断力および最大鉛 直反力が最も小さくなり、塔基部にかかる負担を低減し ている。

塔頂部の応答変位については、端部に LY100 を用い た場合、最大応答変位が最も低減されている。ただし、 端部での塑性化の影響を受け、残留変位が生じている。 しかし、許容残留変位内に収まり、耐震設計上問題ない ものと考えられる。

以上より、水平梁端部のフランジ厚を小さくした場合 に比べ鋼材を変えた場合のほうが、水平梁端部でよりエ ネルギー吸収をし、基部や塔頂部での負担を大幅に低減 することが確認された。その中でも、LY100を用いた場 合が最も優れた結果を得たことから、損傷部材には降伏 点の低い鋼材を用いることがこの斜張橋の耐震性能向上 に効果的であると考えられる。

参考文献

- 1) 林川俊郎:橋梁工学、朝倉書店、2000
- 2) 日本道路協会:道路橋示方書·同解説、2002
- 3) 林川俊郎、曽根原いつみ、永田克司、松本高志:形 状記憶合金を用いた斜張橋鋼製タワーの耐震性能向 上、土木学会北海道支部論文報告集、第 64 号、A-26、2008