RC 構造欠陥検出のための局部振動実験及び数値シミュレーション

Experiment and numerical simulation of local excitation method for defect detection of RC structures

〇北見工業大学	学生会員	李 昕	宇	北見工業大学	正会員	山崎	智之
北見工業大学	正会員 三	E上 修	<u>š</u> —	北見工業大学	フェロー	大島	俊之

1. はじめ

日本において、戦後の国土復興とその後の高度経済成 長期に、非常に多くの社会基盤施設を作ってきた。これ らの多くの社会基盤施設は建設後数十年を経過しており、 今後性能限界を超えた構造物が増加すると予想される。 しかし、現在の財政状況等から考えると性能限界を超え ているすべての構造物を造り代えることは困難である。 そのため構造物を長寿命化する適切な維持・補修が必要 であり、損傷度の把握、健全度の判定方法の確立が必要 である。現在一般的に行われている目視点検によってす べての構造物の損傷度判定をすることは非常に困難であ る。構造物の性能評価方法の一つとして、構造物の振動 計測結果を基に構造物の設計、施工、維持管理に関する 有用な情報得るための振動モニタリングが挙げられる。

本研究は積層圧電アクチュエータを用いた局部振動実 験を行い、その計測結果を用いた RC 構造部材の損傷度判 定を行うことを目的としている。本論文では上記目的の ため、局部振動実験と数値シミュレーションを行い、実 験結果と数値解析結果との比較を通して RC 構造部材の 損傷の有無、損傷の位置を特定する解析を行った。また、 数値シミュレーションを通して実験加振方法などの検討 を行う。

2. 損傷検出解析の理論説明

関数*G_i(f)*は周波数fにおけるチャンネル番号iで測定 された加速度応答波形をスペクトル解析した時のパワー スペクトルの大きさを示す。そして、健全状態と損傷状 態のパワースペクトルの差(絶対値)で損傷による変化の 大きさを式(1)に定義する。

 $G_i(f)$ は健全状態、 $G_i^*(f)$ は損傷状態における構造物の パワースペクトルの大きさを表す。パワースペクトルが それぞれの測定位置(チャンネル)で f_i から f_m までの周 波数で計算されるとき、損傷による変化を表わす $D_i(f)$ は 式(2)でマトリクス[D]定式化することができる。

$$D = \begin{bmatrix} D_{1}(f_{1}) & D_{1}(f_{2}) & \cdots & D_{1}(f_{j}) \cdots & D_{1}(f_{m}) \\ D_{2}(f_{1}) & D_{2}(f_{2}) & \cdots & D_{2}(f_{j}) \cdots & D_{2}(f_{m}) \\ \vdots & \vdots & \ddots & \cdots & \vdots \\ D_{1}(f_{1}) & D_{1}(f_{2}) & \cdots & D_{n}(f_{j}) \cdots & D_{n}(f_{m}) \\ \vdots & \vdots & \ddots & \cdots & \vdots \\ D_{n}(f_{1}) & D_{n}(f_{2}) & \cdots & D_{n}(f_{j}) \cdots & D_{n}(f_{m}) \end{bmatrix}$$

$$TC = \begin{cases} \sum_{j=1}^{m} D_{1}(f_{j}) \\ \sum_{j=1}^{m} D_{2}(f_{j}) \\ \vdots \\ \sum_{j=1}^{m} D_{n}(f_{j}) \\ \sum_{j=1}^{m} D_{n}(f_{j}) \end{bmatrix}$$

n は測定点の数(チャンネル数)を表し、m はスペクトル 解析における周波数の数を表す。マトリクス[D]における 列の要素は同じ周波数における異なった測定チャンネル のパワースペクトルを表す。各チャンネルのパワースペ クトルの合計を式(3)の Total_Change (TC)とし、この Total_Change が損傷の有無や大きさを表わす指標とな る。以上のことより、マトリクス[D]の合計から損傷を数 値化できる。しかし、パワースペクトルの合計(TC)は局 部的損傷としては小さい値であるため、損傷位置を決定 するために統計的意思決定手順を使用した。この手順は、 それぞれの周波数で最大のパワースペクトル(マトリク ス[D]の各々の列の最大値)を選択して、他のチャンネル のパワースペクトルを全て取り除く(0とする)。例えば、 マトリクス[D]では $D_3(f_1)$ が最初の列の最大値であるなら ば $M_3(f_1)=D_3(f_1)$ とし、この列の他の要素は 0 とする。同 様に、マトリクス[D]の他の列に適用し、各々の周波数に おける最大パワースペクトルを選択してマトリクス[M] を次式のように定義する。

次に、マトリクス[C]はマトリクス[M]において損傷を 受けた場所を1、損傷を受けてない場所を0とする。例 えば、マトリクス[C]として上記の表現で示せば $M_3(f_i)$ 、 $M_2(f_2)$ ・・の位置(チャンネル)に対応して1の値を置 いた。マトリクス[M]の行から最大パワースペクトルの合 計が計算できる。

{SM}は各チャンネルのパワースペクトルの最大変化の 合計を示し、{SC}はマトリクス[C]の行の合計を示す。損 傷による変化 Damage_Indicator (DI)は次式に示される ように {SM} と {SC}のスカラ積として定義される。

3. RC供試体で行った局部振動実験

(1) 供試体概要

実験を行った RC 供試体は図1 に示すような長さ1500m、高さ200m、幅100mmの梁である。供試体の高さ50mmと150mm、幅50mm(中央)の所に異径鉄筋(D13)が長さ方向に二本配置されている。また高さ方向にも100mm 間隔で同じ鉄筋を配置している。アクチュエータと加速度計は図1に示すような供試体上面の中央部に187.5mm 間隔で設置している。

(2) 損傷の設定

損傷は3段階の損傷を設定した。損傷1:コンクリートだけの損傷で底面から高さ40mm、幅5mm程度のスリットを入れた。損傷2:損傷1からさらに上方(底面からの高さ100mmまで)コンクリートにスリットを入れた。ただし、鉄筋はそのままとした。損傷3:下側の鉄筋を切断した。

(3) 加振方法

積層圧電アクチュエータを用いて 100Hz から 800Hz ま での周波数が直線的に連続で変化する sin 波によりスイープ加振 と sin 波加振により二種類の振動実験を行った。 加振初期荷重: 300N

スイープ加振(100Hz~800Hz)

加振時間:20秒、サンプリング周波数:8000Hz 各 sin 波加振(100Hz、200Hz、・・・800Hz)

加振時間:3.5秒、サンプリング周波数:8000Hz

図1 RC 供試体の概要と主な寸法および損傷位置

(4)実験データの解析結果

一例として、sin 波加振周波数 600Hz における、CH5 の各状態 のパワースペクトル比較を図 2 に示す。また、スイープ加振に おける、CH5 の健全状態と損傷状態 1 (D0 と D1) のパワースペク トル比較を図 3 に示す。パワースペクトルの Total_Change (TC) 損傷検出解析による各チャンネルにおける各状態のパワ ースペクトルの変化の合計 (TC)を図 4 に示す。 Damage_Indicator (DI) 損傷検出解析による各チャンネ ルにおける各状態のパワースペクトル大きさ変化の合計 (DI)を図 5 に示す。

sin 波局部振動加振により、損傷が大きくなるにつれてピークの 振幅はほぼ大きくなる傾向がある。また、スイーブ波局部振動加 振により、損傷によって構造物の卓越振動数は減少している ことがわかった。Total_Change(TC)損傷検出解析と Damage_Indicator(DI)損傷検出解析により、CH2、CH3 と CH5 の TC と DI は大きいので、CH2、CH3 と CH5 の間に 損傷があるという判断になる。実際の損傷位置 (CH2 と CH3 の下側、CH5 の両側) とほぼ一致している。

以上により、スイープ波とsin波局部振動加振により構造物の 振動特性、及び各波形の形状変化を捉えることでRC構造 物の損傷有無の判定と損傷位置の把握ができると考えら れる。

34 損傷」「「30 lotal_change(IC) (各状態のパワースペクトルの差)

平成20年度 土木学会北海道支部 論文報告集 第65号

4. 数値シミュレーションの概要

損傷の位置を正確に把握するために、局部振動実験の 数値シミュレーションを行った。 (1) 解析モデル

汎用構造解析プログラムであるMARCを用いて実験のRC 供試体をモデル化した健全状態モデルと損傷状態モデル を図6に示す。モデルの材料定数を表1に示す。損傷の大 きさは実験と同様に設定した。

材料	コンクリート	鉄筋					
要素分割	9600	412					
幾何特性	立方体	弾性はり					
ヤング率 E							
$[N/cm^2]$	2×10^{6}	2×10^{7}					
質量密度 ρ							
$[Kg/cm^3]$	250×10^{-6}	786×10^{-6}					
ポアソン比	0.2	0.3					
減衰率	0.03	0.01					

表1 材料定数

健全状態D0

図6 解析要素モデル

(2) 固有值解析

モデルの固有値解析による一部モードの固有振動数を 表2に示す。モード24とモード30の固有振動数はRC供試体 実験のスイープ波加振における供試体の卓越振動数に近いこと から、このモデル化は実験に近いと考えられる。また、モード19 と20付近の振動数が損傷によって変化が生じやすいと考えられる ので、600Hzで加振することにより損傷が検出しやすいと 考えられる。

(3) 動的応答解析

1)アクチュエータによる入力加振のモデル化

図7に示すような入力波形で振動させる。加振周波数は 600Hz、入力時間0.25秒、時間ステップ0.000033秒、加振 初期荷重P=300N、入力位置は実験のアクチュエータと同 じ位置である。計算結果の出力位置は実験の加速度計位 置と同じである。(図1参照) 2) 計算方法: Newmark β法

	ダメージ番号						
	DO	D1	D2	D3			
mode1	20	19	18	18			
mode16	446	444	436	415			
mode17	498	480	449	431			
mode18	521	519	512	477			
mode19	580	549	517	488			
mode20	633	626	605	571			
mode21	639	627	615	608			
mode22	662	647	623	608			
mode23	739	721	703	684			
mode24	791	772	740	731			
mode25	805	800	786	748			
mode26	905	893	845	801			
mode27	933	909	858	833			
mode28	949	923	909	866			
mode29	953	938	918	888			
mode30	1084	1039	1023	986			

表2 固有振動数(Hz)

平成20年度 土木学会北海道支部 論文報告集 第65号

図7 動的応答解析の入力波形(加振周波数600Hz)

4) 動的応答解析結果

ー例として、図8に加振周波数は600Hzで計算したCH5 の健全状態と各損傷状態のパワースペクトルを示す。

加振周波数600Hzの場合のTotal_Change (TC)解析により 得られた各チャンネルにおける各状態のパワースペクト ル変化の合計 (TC)を図9に示す。

加振周波数600Hzの場合のDamage_Indicator (DI) 解析 により得られた各チャンネルにおける各状態の比較を図 10に示す。

図 8 CH5 の健全状態と各損傷状態の PSD (加振周波数600Hz)

図9 Total_Change(TC) (加振周波数600Hz)

図10 Damage_Indicator(DI) (加振周波数600Hz)

5. 考察

局部振動実験の数値シミュレーションを通して、各損 傷によるパワースペクトルのピーク値が大きくなってい ることがわかった。また、損傷検出解析により損傷位置 近くにあるCH2、CH3、CH5におけるパワースペクトルの変化が 大きくみられた。このことからCH2、CH3 とCH5の間に損傷 があると考えられる。今回の数値シミュレーションによって 損傷有無の判定と損傷位置の特定が可能であることが確認され た。

実験結果と数値シミュレーション結果を比較すると、両者と も損傷有無の判定と損傷位置の特定が可能であった。数値シミ ュレーションを通して、より良い実験加振周波数を確立するこ とができると考えられる。しかし、損傷位置のより精確な特定 にはさらに検討する必要である。

今後、数値シミュレーションを通してより効果のある加振方 法や計測位置の検証を行う予定である。また、それに対して供 試体を用いて実験を行い検証したいと思う。

謝辞:本研究は、科学研究費補助金(平成20年度研究代 表者大島俊之)を受けて実施したものである。ここに記し て深く感謝申し上げます。

参考文献

1) Oshima T., Yamazaki T., Onishi K. and Mikami S., Study on damage evaluation of joint in steel member by using local vibration excitation, (In Japanese), *Journal of Applied Mechanics JSCE*, Vol.5, pp.837-846, 2002., 2002.