RC 梁のひび割れ開口幅からの鉄筋応力及び鉄筋径の推定

Estimation of rebar stress and diameter from the COD profile of an RC beam

北海道大学大学院工学研究科	正 員	松本 高志	(Takashi Matsumoto)
北海道大学大学院工学研究科	○学生員	佐藤 圭太	(Keita Sato)
北海道大学大学院工学研究科	F会員	林川 俊郎	(Toshiro Hayashikawa)
北海道大学大学院工学研究科	正 員	何 興文	(Xingwen He)

1. はじめに

わが国における社会基盤構造物は,高度経済成長期に数 多く整備され、その充実が図られてきた.そのため、供用開 始から35~45年経過した今日では、多くの構造物が壮年期 を迎えつつあるのが現状である.およそ10~15年後には多 くの橋梁が供用後50年を迎え、今後適切な維持管理を欠く ことがあれば老朽化により本来の機能を失う恐れもあり, また崩壊等による事故の危険性もある.近年の資本投資の 効率性に対する市民意識の向上や,社会資本への投資余力 の減少なども相まって,既存の社会資本の有効利用と維持 管理が重要となってきており,また効率的な維持管理計画 を行うには,構造物の損傷や劣化状態を把握する必要性が ある.RC 構造物においては,内部鉄筋の物理的並びに機械 的な評価がメンテナンス及びヘルスモニタリングの面か ら重要とされてきている.近年整備された構造物には,経年 劣化による内部破壊等の微細な情報を得るために,光ファ イバーなどのセンサーを構造物の主要な位置に埋め込ん でいるものもある.

しかしながら,現在そのような構造物はいまだ少数であ り,実際の検査では,ひび割れ幅やひび割れ長さからの単位 面積当たりのひび割れ面積のみの記録を行うことが多い. 加えて,専門技術者も減少の一途をたどっており,より高度 な非破壊検査を効率よく行うためには非専門技術者にも 扱えるようなシステムの開発が必要となってきている.

本研究は、ひび割れ開口幅(Crack Opening Displacement, COD)を用いた逆解析により、内部鉄筋応力及び鉄筋径の 推定を行うことで、ひび割れ検査の高度化・簡易化を図り、 非破壊検査への適用を目指すものである.

2. RC 梁の破壊力学モデル

2.1 解析対象

本研究ではスパン中央にひび割れが発生してい る,40x10x10cmの単純梁を考える.表-1に諸元を,図-1に解 析対象を示す.ここで,Fは鉄筋の力,σ(x)は外力による曲 げ応力,aはひび割れ長さ,bは梁の高さとなっている.矩形 断面内に鉄筋が2本平行に配置されているものとし,かぶ りhは3.2cmとする.コンクリートの圧縮強度は35MPa,鉄 筋の降伏強度は400MPaとした.

± 1 ≣# →

Unit weight of concrete (Kg/m ³)	Young's modulus of concrete (MPa)	Poisson's ratio of concrete		
2400	29832	0.15		
Side cover (mm)	Young's modulus of steel (GPa)			
20	200			

2.2 順解析によるひび割れ開口幅の取得

本研究の逆解析では,RC 梁のひび割れ開口幅からの鉄 筋応力及び鉄筋径の推定を行うため,COD 値を取得する. 用いる COD 値には順解析により得られる理論解析値,理 論解析値に正規乱数を加えて作成する疑似実験値,及び実 験と画像解析による実験値がある.本研究においては理論 解析値及び疑似実験値を用いた解析を行い,後に行う実験 値を用いた解析での精度の向上を目指している.疑似実 験値の作成法については後述する.

理論解析値は前述の諸元及び荷重等から次式のように 得られる.

$$u(x) = \frac{4(1-\nu^2)}{E_c} \int_{x}^{a} \left[\int_{0}^{a'} G(x',a',b) [\sigma(x') - f(x')] dx' \right] G(x,a',b) da'^{(1)}$$

ここで,u(x) はひび割れ開口幅(=COD 値),f(x) は 鉄筋による架橋応力,また E_c 及びvはコンクリートのヤン グ率とポアソン比,G(x, a, b) は重み関数である.¹⁾ 理論解析値,及び疑似実験値の一例を図-2 に示す.

3. ひび割れ開口幅からの鉄筋応力の推定

3.1 逆解析における不適切性の緩和

順解析により得られた理論解析 COD 値から鉄筋径を推 定するには,鉄筋がない場合の COD 値から,上述の COD 値 を引くことで,鉄筋によるひび割れの狭まりを算出し,逆解 析により鉄筋応力を得る.

既往の研究²⁾⁻⁵⁾より実験値をそのまま逆解析に用いることは,測定時のノイズなどの影響から解の安定性が得られず,不適切な問題となることがわかっている.そのため逆解析を行う前に正則化を行い,不適切な問題を適切な問題とした上で逆解析を行い,鉄筋応力値を取得する.

本研究では、逆問題の不適切性の解消に最もよく用いら れるチホノフ正則化法(Tikhonov Regularization Method) を用いた.^のこれは測定時または行列作成時などに混入し た誤差による悪影響を伴ったデータに、安定化項を加えた 安定化汎関数を作成することで、誤差による影響を緩和す るものである.

$$(A \cdot A + \alpha I) \cdot f^* = u \tag{2}$$

ここで A は要素 f*と要素 u の作用素 (写像), α は Tikhonov 正則化パラメータ, I は単位行列である.

この手法における問題は α の決定法である.データによって適切な α の値は異なり,また適切な α は未知である.この適切な α を決定する手法として本研究では食い違い量 原理(Discrepancy Principle)を用いた.食い違い量原理については次節にて述べる.

3.2 食い違い量原理

チホノフ正則化法において重要なパラメータである α を求める方法として,L-カーブ法やノルム最小法などが挙 げられるが,本研究においては食い違い量原理を用いている.⁷

$$G(\alpha) = \left\| \left(A \cdot A + \alpha I \right) \cdot f^* - u \right\|^2 - \delta^2 (= 0)$$
(3)

ここでδは解の誤差である.

解から測定値を引いたノルムから誤差を引いたものが 0 若しくは最小となるようなαが最も適切であるとする ものである.この際にこの G(α)を収束させる方法とし てニュートン法を用いる.ニュートン法は方程式系を数値 計算で解く反復法の一種であり,初期値を適切に設定すれ ば二次収束することから採用した.ニュートン法の漸化式 を次式に示す.

$$\alpha_{n+1} = \alpha_n - \frac{G_{(\alpha)}}{G'_{(\alpha)}} \tag{4}$$

3.3 逆解析による鉄筋応力の推定

上記の正則化を行った後に,逆解析により鉄筋応力の取得を行う.理論解析値を用いた場合の鉄筋応力値の例を図-3に示す.また,鉄筋径を6mmとし,荷重を変化させた場合に,理論解析値を用いた鉄筋応力推定結果を表-2に示す.

鉄筋応力値の解析解は離散点で得られるため,それらの 点を最小二乗法により関数化し,最大応力値周辺の正の部 分を積分することで鉄筋応力を算出する.また,理論解の計 算式は次式で表される.

$$f_{th} = \frac{M}{As \cdot j \cdot d} \tag{5}$$

ここで M は外力によるモーメント,As は鉄筋断面積,d は梁の有効高さ,jd はアーム長である.

結果は,理論解と解析解について誤差はあるものの,15% 以内におさまっている.また,荷重が小さくなるにつれて誤 差が大きくなっていくことが見て取れる.これは荷重が小 さくなり,ひび割れ幅が小さくなるにつれて鉄筋が引き受 ける力が減り,鉄筋によるひび割れの狭まりが読み取りづ らくなることが原因ではないかと思われる.

以上より,ひび割れ幅からの逆解析を行うことで多少の 誤差はあるものの,鉄筋応力を求められることが示された. ここで,RC 梁の曲げ引張耐力においては,引張側の鉄筋の 有効断面積がその性能を大きく左右することがわかって いる.したがって,腐食等を原因とする鉄筋径の減少 が,COD 値の増加という形で現れることが予想される.⁷⁾ つまり,COD 値から鉄筋の有効断面積を推定できる可能性 がある.よって以下では逆解析により得られる鉄筋応力値 の応用可能性の一つとして,応力からの鉄筋径の推定につ いての検討を行っていく.これにより,これまでの損傷度の 判定や補修必要性の有無などの評価を,より定量的に行う ための検討を行う.

4. 鉄筋応力からの鉄筋径の推定

4.1 中腹点法

ひび割れ開口幅からの逆解析により得られた鉄筋応力

Total load (tf)	Theoretical rebar stress (MPa)	Analytical rebar stress (MPa)	Error
1.6	193.762	221.703	14.42%
1.8	217.918	247.021	13.35%
2	242.075	271.573	12.19%
2.2	266.231	295.285	10.91%
2.4	290.387	322.078	10.91%
2.6	314.543	344.555	9.54%

から鉄筋径を算出する手法の一つとして,中腹点法(Half Point Method)を用いた.この手法は得られた応力曲線につ いて,最大応力値の 50%の応力値を示す 2 点間の距離を鉄 筋径とするものである.図解を図-4 (a) に示す.また,鉄筋径

が6mmで,荷重を変化させた理論解析値を用いた解析結果 を表-3に示す.

結果より,荷重が増加するごとに精度が向上しているの が認められる.これは,荷重が大きくなるにつれて鉄筋が負 担する力が増加し、鉄筋によるひび割れの狭まりがより大 きくなるためであると考えられる.

4. 2 等面積換算法

鉄筋応力から鉄筋径を取得する別な手法として等面積 換算法(Equivalent Area Method)を用いた.

鉄筋断面内に応力が一様に作用しているとすると,図-4 (b)の実線の様に応力が得られるはずだが,解析では図-4

(b)における破線の様に算出される.そこで,得られた応力 の最大値が鉄筋断面内に一様に作用しているとして,曲線 の最大値周辺の正の部分の積分によって得られる鉄筋応 力値を,高さを最大応力値とする長方形に換算することで, その幅を鉄筋径とする手法である.同様に鉄筋径 6mmで荷 重を変化させた理論解析値を用いた解析の結果を表-3 に 示す.

結果としては同様に荷重が増加するごとに精度が向上 している.理由としては前述のとおりであると考えられる. また,若干ではあるが,等面積換算法よりも中腹点法の方が より高い精度で計算できている.

以上より,二つの手法共に鉄筋応力からの鉄筋径の算出 が可能であることを示した.次章は実験値に対する有効性 を検討するために,疑似実験値を用いた鉄筋応力及び鉄筋 径の算出シミュレーションを行う.

5. 鉄筋応力及び鉄筋径推定シミュレーション

5.1 疑似実験值作成

本研究における解析の妥当性と有効性を検討するため に疑似実験値を作成し,鉄筋応力及び鉄筋径の算定シミュ レーションを試みた.

使用する疑似実験値は、COD 値が外力及び鉄筋径に大き く影響を受けることから、鉄筋の降伏応力を考慮し、後述す る荷重と鉄筋径の10種類のパターンから得られる理論解 析 COD 値に、平均が0で分散を最大 COD 値の3%とした正 規乱数を加えることで、計10ケース作成した.これらの疑 似実験値を用い、鉄筋応力及び鉄筋径の算出を行う.またそ の際により精緻な結果を得るため、最小二乗法による多項 式近似を行い疑似実験値の亀裂形状における鋸状の輪郭 の平滑化を図った後に解析を行うこととする.多項式近似 を行った際の疑似実験 COD 値例、及び逆解析による鉄筋 応力算出例を図-5 に示す.

表-3 鉄筋径推定結果

Total load (tf)	Diameter by equivalent area method (mm)	Error	Diameter by half point method (mm)	Error
1.6	5.72095	4.65%	5.8398	2.67%
1.8	5.7377	4.37%	5.8562	2.40%
2	5.77105	3.82%	5.8846	1.92%
2.2	5.82523	2.91%	5.9281	1.20%
2.4	5.82523	2.91%	5.9281	1.20%

5.2 鉄筋応力値及び鉄筋径推定

作成した 10 ケースの疑似実験値のそれぞれについて逆 解析を行い,鉄筋応力及び鉄筋径を算出した.鉄筋径の算出

	Rebar diameter (mm)	Total load (tf)	Rebar diameter by half point method (mm)	Error	Rebar diameter by equivalent area method (mm)	Error
Case 1	5	1.6	5.71019	14.20%	5.8502	17.00%
Case 2	5	2	5.45433	9.09%	5.61258	12.25%
Case 3	5	2.2	5.53538	10.71%	5.65182	13.04%
Case 4	6	1.6	6.44124	7.35%	6.31095	5.18%
Case 5	6	2	6.12308	2.05%	6.23816	3.97%
Case 6	6	2.4	5.92717	1.21%	6.0485	0.81%
Case 7	7	1.6	6.77901	3.16%	6.70543	4.21%
Case 8	7	2	7.32832	4.69%	7.44305	6.33%
Case 9	7	2.4	7.14662	2.09%	7.19459	2.78%
Case 10	7	2.8	6.99658	0.05%	7.1134	1.62%

表-4 鉄筋径推定結果

表-5 鉄筋応力推定結果

	Theoretical	Analytical	
	rebar stress	rebar stress	Error
	(MPa)	(MPa)	
Case 1	272.4020	196.9448	27.70%
Case 2	340.3217	284.3857	16.44%
Case 3	374.2815	319.2877	14.69%
Case 4	193.7623	158.6318	18.13%
Case 5	242.0747	216.8208	10.43%
Case 6	290.3870	302.9918	4.34%
Case 7	145.7197	180.8180	24.09%
Case 8	182.0538	182.4018	0.19%
Case 9	218.3866	233.3590	6.86%
Case 10	254.7207	243.3388	4.47%

には,理論解析でより精度の高かった中腹点法を使用する こととし,取得した鉄筋径により算定できる断面積を用い て鉄筋応力を算出した.結果を表-4 及び表-5 に示す.

結果より,疑似実験値を使用しているため,全体的に精度 にばらつきが見られるが,これまで同様に総じて荷重が大 きいほど,また鉄筋径が大きいほど誤差が小さくなってい ることが認められる.

5.3 考察

以上より,疑似実験値を用いた鉄筋応力及び鉄筋径解析 のシミュレーションにおいて,これまで同様に荷重及び鉄 筋径が大きくなるにつれて精度が上がるという結果が得 られた.理由としては,荷重が増加するにつれて,ひび割れ 開口幅に対する鉄筋の役割が大きくなることや,鉄筋の有 効断面積が増加することで鉄筋が負担する応力が増え,鉄 筋によるひび割れの狭まりがより顕著に現れることなど が挙げられる.このことから,実際に実験を行い,ひび割れ を観察し解析する場合には,荷重を鉄筋の降伏荷重にでき るだけ近くすると,より高い精度で鉄筋応力及び鉄筋径が 推定できるのではないかと考えられる.

また今回,鉄筋径の算出に二種類の手法について試した が,現段階ではどちらも問題なく鉄筋径を算出できている ため,今後の研究においても二つの手法を併用していくこ ととする.

6. まとめ

本研究は、ひび割れ開口幅を用いた逆解析による RC 梁

の内部鉄筋応力及び鉄筋径の推定を行うことで,ひび割れ 検査の高度化と,非破壊検査への適用を図るために行われ た基礎的研究である.

今回行った疑似実験値を用いたシミュレーションの結 果,鉄筋応力及び鉄筋径を推定できることが示された.結果 では,荷重が大きくなるにつれて精度が向上することが示 され,実際に RC 構造物のひび割れを観察する場合には鉄 筋の降伏荷重以下で,荷重が大きい場合に精度が高くなる と考えられる.

また今回,鉄筋径を算出する方法として中腹点法と等面 積換算法の2種類を提案したが,現在のところ互いの優劣 は判別しがたいため,今後もこの二つを併用しつつ比較し ていく.

今後は実験を行い,今回行った解析の有効性や実用性の 検討,また実際に腐食が発生している場合の算出の検討,及 び複数本ひび割れが発生している場合や同一の供試体に 荷重を段階的に載荷して破壊した場合の検討について考 えていく必要がある.また,梁だけでなくスラブやトンネル 等のコンクリート壁への適用を考慮し,RC 平板内の亀裂 についても同様に考えていくことも必要である.

【参考文献】

- 1) Hiroshi Tada : The stress analysis of cracks hand book, second edition, pp2.25-2.27, 1985.
- I. M. Nazmul, T. Matsumoto : High resolution COD image analysis for health monitoring of reinforced concrete structures through inverse analysis, ASCE-J. Eng. Mech. pp4-25, 2006.
- 3) I. M. Nazmul, T. Matsumoto: Determination of steel stress in reinforced concrete structures form crack opening profile, SHMII-1. Reference No.0113, pp2-8, 2003.
- I. M. Nazmul, T. Matsumoto : Inverse analysis to determine crack bridging stresses in fiber composites, J. Appl. Mech.-JSCE, pp3-4, 2003.
- 5) I.M. Nazumul, T. Matsumoto : Regularization of inverse problems in reinforced concrete fracture, ASCE- J. Eng. Mech, pp13-16, 2005.
- 6) 堤正義:逆問題の数学,共立出版,pp27-29,2000.
- 7) 久保司郎: 逆問題, 培風館, pp45-54, 1992.
- 8) 花岡大伸, 矢野真義, 宮里心一: 鉄筋コンクリート梁の 腐食形態と腐食量が曲げ性状に及ぼす影響, 土木学会論 文集 E Vol.63 No.2, pp300-312, 2007.