三径間連続桁の挙動特性におよぼす床版目地の影響

Effect of slab joint on structural behavior of three continuous steel girder bridge

室蘭工業大学 室蘭工業大学 (独)寒地土木研究所 (独)寒地土木研究所 室蘭工業大学大学院 室蘭工業大学大学院

フェロー	岸 徳光	(Norimitsu Kishi)
正 員	小室 雅人	(Masato Komuro)
正 員	石川 博之	(Hiroyuki Isikawa)
正 員	三田村 浩	(Hiroshi Mitamura)
正 員	岡田 慎哉	(Sin-ya Okada)
○学生員	中野渡 明久	(Akihisa Nakanowatari)

1. はじめに

我が国には,高度経済成長期(1960年~1980年)以前に 建設された橋梁およびダムなどの社会基盤施設が現在も使 用されている.当時は,建設材料の性能や施工技術などが 未成熟であったため,現在建設される橋梁とは若干異なる 部分を有するものも多い.特にコンクリート床版において は,温度応力対策や段階施工を行うためにブロック単位で 打設され,各ブロック間には目地が設置されている橋梁も 存在する.このような橋梁を長期間健全に使用するために は,コンクリートの床版目地が橋梁全体の挙動特性におよ ぼす影響を把握しておく必要があるものと考えられる.

また,近年では,橋梁全体の振動特性および応力分布状態を診断する一つの方法として,三次元有限要素法(FEM)が用いられており,橋梁全体の固有振動特性および応力分布状態の確認が比較的容易に可能となってきた.

このような観点より,本研究では,現存する三径間連続桁のA橋を対象に,コンクリート床版目地が橋梁全体の挙動特性に与える影響について,三次元有限要素法を用いて数値解析的に検討を行った。具体的には,上部工の振動特性およびトラック載荷時の橋梁各点の変位およびひずみ分布状態などについて着目している。なお,本解析には,構造解析用汎用プログラムである ABAQUS を用いている¹⁾.

2. 有限要素モデル

図-1には、本解析で用いた A 橋の要素分割状況を示している。A 橋は橋長 82.7 m, 全幅 55.0 m の三径間連続桁である。本橋梁では、脚高が高いことから、橋脚の振動が全体系の振動特性に影響を与えることが予想されるため、橋脚を含めた全体系のモデル化を行った。使用要素は、主桁、横桁および横構には 4 節点シェル要素を、橋台、橋脚、支承および床版には 8 節点固体要素を、対傾構には、モデル 簡略化のために 2 節点ビーム要素を用いた。なお、高欄は、その剛性が小さいと考えられることから、本解析ではモデル化を省略した。本解析モデルの総節点数および総要素数はそれぞれ 97,686、88,832 である。境界条件は、橋脚および橋台のフーチング部の底面を完全固定とした。**表-1**には、本解析で使用した物性値の一覧を示している。

床版目地を設置する場合には,図-2(b)に示すように,目地部分に10mmの隙間を設けている.なお,床版目地間隔は,両端部で約8.5m,それ以外の区間は8.2mである. ここでは,床版目地の有無による,1)上部工の固有振動特性,および2)トラック載荷時における桁部の変位およびひずみ分布状態の把握を目的とした二つの解析を実施している.以下,それぞれの解析概要および解析結果について述べる.

図-1 要素分割状況

図-2 床版目地

表-1 使	用物性值	一覧
--------------	------	----

	使用材料	弾性係数 <i>E</i> (GPa)	密度 <i>ρ</i> (g/cm ³)	ポアソン比 v
ľ	鋼材	206	7.85	0.30
I	鉄筋コンクリート	30	2.50	0.20
I	アスファルト	9.8	2.30	0.35

	固有振動数(Hz)		副社社
振動	床版目地を設置	床版目地を設置	
モード	しない場合(case1)	する場合(case2)	$k_i = \left(\frac{f_{2i}}{f_{ij}}\right)$
	f_{1i}	f_{2i}	$\langle J1i \rangle$
1次	3.52	3.31	0.88
2次	3.84	3.76	0.96
3次	4.90	4.70	0.92
4 次	6.07	5.72	0.89
5次	6.27	5.95	0.90

表-2 固有振動数一覽	ĩ
--------------------	---

3. 固有振動解析

3.1 数值解析概要

床版目地の設置の有無による固有振動数および振動モー ド分布への影響を把握することを目的に,三次元有限要素 法による弾性固有振動解析を実施した.なお,上部工にお ける固有振動特性の把握に主眼を置いていることより,対 傾構に関しては,その振動の励起を防ぐ目的で,それらの 質量を定着部に等しく付加することとした.

3.2 数値解析結果および考察

表-2には、各解析ケースにおける最低次から5次振動 モードまでの固有振動数 (f_{1i} , f_{2i})およびそれらの剛性比 k_i を一覧にして示している.なお、剛性比 k_i は、目地設置の 有無による質量の変化は非常に小さいものと考え、各ケー スにおける固有振動数の比を用いて次式で評価した.

$$k_i = \left(\frac{f_{2i}}{f_{1i}}\right)^2 \tag{1}$$

表-2より,各解析ケースにおける最低次固有振動数を 比較すると,目地を設置しない場合(case1)で3.52 Hz,目 地を設置する場合(case2)で3.31 Hzと前者が後者よりも 大きくなっている.また,この傾向は,他の高次振動モー ドにおいても同様である.なお,両ケースの剛性比*ki*に着 目すると,目地を設置する場合が,目地を設置しない場合 と比較して,概ね10%程度剛性が低下していることが分 かる.

(b) ねじり対称1次振動モード (case1: 3.84 Hz, case2: 3.76 Hz)

(d) ねじり逆対称1次振動モード (case1: 6.07 Hz, case2: 5.72 Hz)

(e) ねじり対称2次振動モード (case1: 6.27 Hz, case2: 5.95 Hz)
図-3 解析結果から得られるの振動モード (case1)

図-5 輪荷重をシェル要素に置換した場合の載荷面

図-3には, case1における最低次から5次までの固有 振動モードを示している. なお, 振動モードは両ケースで 一致したため, case1の結果のみを示している. 図より, 1 次, 3次振動モードが曲げ振動, 2次, 4次, 5次振動モー ドがねじり振動であることが分かる.

4. トラック載荷による静的解析

4.1 数值解析概要

本解析では、casel および2におけるトラック載荷時の 桁部の変位およびひずみ分布状態を把握をすることを目 的に、三次元有限要素法を用いた静的弾性解析を実施し た.トラックの載荷位置は、図-4に示すように2台の20 tトラックを橋梁の中心から250 mmの位置に載荷したと 仮定している.なお、本解析では道路橋示方書に準じて、 図-5に示すようにトラックの輪荷重を設定し、シェル要 素に同等の質量を付加して載荷した²).

4.2 数値解析結果および考察

図-6には、トラック載荷時の床版上面中央部の鉛直方 向変位および最大変位で正規化したものを両ケースで比較 して示している.(a)図より、目地を設置しない場合の最 大変位は 0.91 mm であるのに対し、目地を設置した場合に は 10.3 mm と変位が約 11 倍増加している.また、(b)図よ り、目地を設置する場合には、中間支点やスパン中央部に おいて、目地の影響によって無次元変位分布が若干異なる ことが分かる.

図-7には、**図**-4に示す断面AおよびBにおける橋軸 方向ひずみ分布 (*ε*_y)を示している. **図**-7(a)より,床版 および主桁の中間支点近傍で負曲げモーメントが作用す

図-7断面AおよびBの橋軸方向ひずみ分布 (*ε*_v)

る断面 A では、主桁下端部で圧縮ひずみが発生している. また、目地を設置する場合には、目地を設置しない場合と 比較して、主桁下端部でひずみが約 11 倍増大している. 中立軸の位置に着目すると、目地を設置する場合には、設 置しない場合よりも約 315 mm 程度中立軸が圧縮側に移動

図-8 床版目地を設置しない場合 (case1)の橋軸方向ひずみ分布

図-9 床版目地を設置する場合 (case2) の橋軸方向ひずみ分布

しており,断面剛性が低下していることが分かる.なお, case2におけるコンクリート床版部のひずみ分布が非線形 性を示しているが,これはP1橋脚上に設置されている目 地の影響によるものと考えられる.

次に,正曲げモーメントを受ける断面 B の場合(図-7b 参照)には,断面 A とは逆に主桁下縁で引張ひずみが発生 している.また,目地を設置する場合におけるひずみは, 目地を設置しない場合と比較して,断面 A の場合と同様 に主桁下縁で約 10 倍増大している.なお,中立軸の移動 量に関しては,約 37 mm 程度と断面 A と比較して小さい.

図-8および図-9には,橋台A1~橋梁中央部における 桁部の橋軸方向ひずみ分布を各ケースごとに示している. また,図にはP1橋脚近傍の拡大図を併せて示している. ここでは,対称性を考慮して半区間のみを示している.

図-8 および 図-9 より, ひずみレベルは異なるものの, 全体的にはほぼ類似のひずみ分布性状を示していること が分かる.両ケースの最大ひずみに着目すると, casel で 20.7 μ , case2 で 203 μ といずれの場合も P1 橋脚上の下フ ランジ部分で発生している.

また, PI 橋脚上のコンクリート床版部のひずみ分布に 着目すると, case2 の場合には床版上面において圧縮ひず みが発生していることが分かる. これは, 床版目地の影響 によるものと推察される.

以上より、コンクリート床版に目地が設置されている橋 梁の場合、床版を連続化することによって、橋梁全体の剛 性が向上し、変位やひずみを小さくすることが可能である ことを数値解析的に明らかにした.

5. まとめ

床版目地の設置の有無による固有振動特性の把握をする ことを目的とした弾性固有振動解析より,

- 橋梁全体の剛性は、床版目地を設置することによって、目地を設置しない場合と比較して約10%低下すること、
- 2) 各振動モードにおける床版目地の影響は小さいこと,

各ケースにおけるトラック載荷時の桁部の変位およびひ ずみ分布状態を把握をすることを目的とした静的解析より,

- 3) 床版目地を設置する場合の最大たわみ量は,目地を設 置しない場合と比較して約11倍増大すること,
- 4) コンクリート床版に目地が設置されている橋梁の場合、床版を連続化することによって、橋梁全体の剛性が向上し、変位やひずみを小さくすることが可能であること、

等を数値解析的に明らかにした.

参考文献

- ABAQUS/Standard User's Manual, Ver. 5.8, Hibbitt Kalsson & Sorensen Inc., 1998.
- 2) 社団法人 日本道路協会:道路橋示方書·同解説,下部構造 編,2002.3.