軸対称凍結モデルによるフロストバルブとパイプとの凍着強度

Adfreeze strength between frost bulb and pipeline with an axis-symmetric freezing experiment

北海道大学工学部土木工学科	学生員	岡本	玄	(Hikaru Okamoto)
北海道大学大学院工学研究科	正員	蟹江	俊仁	(Shunji Kanie)
北海道大学大学院工学研究科	正員	赤川	敏	(Satoshi Akagawa)
北海道大学大学院工学研究科	学生員	西尾	淳	(Jun Nishio)

1. はじめに

クリーンなエネルギーとして更なる需要の高まりが予 想される天然ガスは,アラスカやシベリアなどの北方圏 域に集中して分布しており,安定的な供給を確保するた めには,パイプラインによる天然ガスネットワークの利 用が望まれる.しかし,永久凍土と非永久凍土が混在す る地域に埋設された冷却ガスパイプラインは,周辺地盤 との凍上などの複雑な相互作用によって,予期せぬ沈下 や上昇,破損などの被害が報告されている.このような 問題を解決するために,凍土とパイプラインの間に作用 する応力評価と予測技術の確立が期待される.

これまでに著者らが行ってきた実験により,パイプ周 辺にフロストバルブが生成されたときのパイプ内および フロストバルブ内の応力度分布が徐々に明らかになって きた.それに加えて,凍土・氷層が構造物に与える影響 を把握する上で,凍土・氷層と構造物との凍着強度も重 要であると考えられる.これは,フロストバルブ形成に よるパイプラインの曲げ剛性やせん断抵抗性への寄与は, 凍着が連続的に保持され,密着していることが条件とな るからである.この凍着強度は,凍土・氷層の温度,接 触面の面圧,ひずみ速度のような因子に左右される.本 研究では,これらの因子に支配される凍着強度の把握に 注力することとし,その因子を変化させながら凍着強度 への影響を実験的に捉えるとともに,現象説明と凍着力 の定量的評価を行うことを目的とする.

2. 凍着強度実験

二重円筒厚肉モールドで成型した供試体を圧密し,供 試体内部に設けた冷却パイプの周辺にフロストバルプを 生成させる.軸対称凍結モデルは,パイプラインに見立 てた冷却パイプに冷却水を循環させ,鉛直方向への膨張 を抑制しながら,パイプを中心とした同心円状のフロス トバルブを供試体内に生成させるものである.この方法 で凍結させることにより,パイプとフロストバルブの力 学的相互作用問題は,応力の作用方向が管理しやすい軸 対称擬似一次元問題として扱うことができる.この際の 供試体外周面での拘束圧力は,供試体を包むメンブレン からの圧力である.こうして作成された供試体を加圧フ レームにセットして,冷却パイプのみに鉛直下方の荷重 を作用させることにより直接凍着強度が求められる.実 験装置の概要を図 1に示す.

この凍着強度実験では,パイプ内温度や鉛直下方の荷 重の他,変位計を設置して冷却パイプの鉛直方向変位を 計測する.変位を計測する理由は,凍着強度は載荷速度 の違いによるひずみ速度にも大きな影響を受けると考え られるためである.

図-1 凍着強度実験モデル

試料の実験条件は表-1 に示すとおりであり,以下の 手順に従って実験を行った.

二重円筒モールド内に供試体を流し込み,圧密する. このときの圧密条件は,両面排水により 50kPa で 12hr, 100kPa で 24hr, 200kPa で 72hr である. 冷却パイプ内に冷却水を循環させて凍結させる.こ のとき,フロストバルブの凍結速度が 1mm/hr.とな るように冷却水の温度を調整する. 冷却水温度が目標の温度に達し,フロストバルブの 成長が収束した時をもって実験開始とする。 冷却パイプの鉛直方向変位計測のための変位計を設 置する. 冷却パイプ上部に設置されたベロフラムシリンダー によって荷重を載荷する.このとき載荷荷重を 10sec.ごとに 0.11kN ずつ増加させていく. パイプとフロストバルブの凍着が破断したとき(荷 重を保持した状態で変位が急激に増加したとき)を もって終了とする.なお,凍着破断後のパイプの最 大変位が 15mm に収まるようストッパーを設置し ておく.

3. 実験結果

凍土・氷層とパイプとの凍着強度はフロストバルブの 温度に依存する.このため,パイプとフロストバルブの 凍着面温度が異なる4Caseについて実験を行った.設定 した冷却水及びパイプ内面温度は表-2に示す通りであ る.表-2には各温度での凍着強度も示してある.凍着 強度は載荷した荷重(kN)で表すものとし,図-2にはこの 結果を示した.

表-1 試料の実験条件

材料	MZ カオリン	圧密荷重	200kPa				
土粒子比重	2.64g/cm ³	圧密時間	108hr				
含水比	77.44%	含水比	40.05%				
(圧密前)	(平均)	(圧密後)	(平均)				
メンブレンばね値	0.1 N/mm	凍結速度	1mm/hr				
室温	1.0						

なお,パイプとフロストバルブの接触面に作用する半 径方向面圧が,凍着強度に影響を与える可能性が考えら れるため,計算により推定されたパイプ外周面での半径 方向応力度も併せて表示した.半径方向応力度の算出に は,以下の半径方向に沿って離散化したときの応力と変 位の関係式を用いた.

$$\begin{cases} -\sigma_r(a) \\ \sigma_r(b) \end{cases} = \begin{bmatrix} K \end{bmatrix} \begin{cases} u_a \\ u_b \end{cases} - \alpha \begin{cases} -(1-2\nu) \\ (1-2\nu) \end{cases} \varepsilon_t$$
(1)

ここで, a およびb は内径と外径, [K] は剛性マトリックス, α は定数, ν はポアソン比, ε_t は凍結膨張ひずみである.式(1)の計算条件は表-3 に示す.なお,凍結後の供試体弾性係数は,その温度により変化するのだが,今回は一定のものと仮定して計算した.

図-2 からわかるように,凍着強度はフロストバルブ の温度が低いほど大きくなる.よって先に述べたとおり, 凍着強度は凍土・氷層の剛性に大きく影響され,また凍 着強度と温度の関係はほぼ線形であるといえる.図-3 には荷重-変位曲線を,図-4 には変位-時間曲線を示した. 図-3 を見ると,温度に依存して荷重の増分に対する変 位増分量が異なり,温度が低くなるほど傾きは小さくな ることが読み取れる.これはパイプとフロストバルプ間 でのせん断剛性に起因するものと思われる.図-4 から, 載荷重は時間的に一定の割合で増加させているのに対し, 変位は非線形に変化していき,特に荷重載荷直後は変位 の増加量が大きいことがわかる.なお Case-4 では,予 定していた荷重でフロストバルプとパイプとの凍着が破 断しなかったため,載荷時と同じ割合で除荷した.

4. 考察

図-2 を見ると,凍着強度は半径方向面圧よりも温度 変化の影響を大きく受けていると考えられる.しかし, 半径方向面圧の推定に用いた計算モデルでは,フロスト バルプの弾性係数設定に温度依存性が考慮されておらず, 供試体外周面での拘束圧力もメンブレンによる拘束のケ ースしか検討していない.このため,計算モデルの改善 や,より高い拘束下での実験等を通じて,更に検討する 必要がある.

図-4 の Case-4 のグラフに着目してみると,荷重を取 り除いていった後に,変位がゼロに戻っており,その曲 線はほぼ左右対称となっている.このことは,フロスト バルブとパイプ間の凍着が弾性的であることを示しては いるのだが,その変位曲線は必ずしも線形であるとはい えない.

-12-2			
『水温度	パイプ内面		

宝融姓甲

Case No.	冷却水温度	バイブ内面温度	凍看強度				
Case-1	- 3	- 1.4	2.3kN				
Case-2	- 5	- 3.2	4.1kN				
Case-3	- 7	- 5.0	6.7kN				
Case-4	- 10	- 6.8	凍着破断 前に除荷				
表-3 計算条件							
│ 冷却パイフ 半径(外側)	25mm	冷却パイプ 弾性係数	210 GPa				
供試体半径 (外側)	100mm	冷却パイプ ポアソン比	0.3				
供試体 ポアソン比	0.2	供試体弾性係数 (凍結前)	500 MPa				
供試体高さ	200mm	(凍結後)	1000 MPa				

5. まとめ

本研究により,フロストバルブの温度が凍着強度に与 える影響の度合いを概ね把握することが出来たと考える. 今後は,金属製の拘束バンドを用いて側方拘束圧を変化 させることにより,接触面の面圧が凍着強度に与える影 響の把握を進めていく予定である.

参考文献

- 空原宗吾,蟹江俊仁,西尾淳,赤川敏:軸対称凍結のための凍上試験装置の開発,土木学会北海道支部 論文報告集,Vol.63,C-2,2007
- 2) 蟹江俊仁,松村正士,竺原宗吾,西尾淳,赤川敏: 軸対称凍上モデルによるフロストバルブ生成時の応 力評価,土木学会北海道支部論文報告集,Vol.63, C-3,2007
- 3) 西尾淳,蟹江俊仁,赤川敏,山下俊彦:軸対称凍結 モデルによるフロストバルブとパイプラインの応力 評価,土木学会年次学術講演会講演概要集, Vol.62,3-133,2007