流出モデルの集中化に関する基礎的研究

Lumping process of runoff model

北海道大学大学院工学研究科 正 員 田中 岳 (Gaku Tanaka)

1.はじめに

洪水,氾濫,暴風雨,土砂,津波,地震,火山噴火な どの自然災害が世界各地で頻発している.この自然災害 の発生件数とその被災者数に関して,水災害(洪水,氾 濫,暴風雨,土砂)のそれらの割合が,近年になり著し く高い傾向を示すと報告された¹⁾.また,水災害が一度 発生すると,その被害の拡大は,主にアジア地域に見ら れる水文観測の不十分な流域や,国内では地方自治体が 管轄し河川整備が十分に行き届かない二級河川の流域に 集中する傾向にある²⁾.

洪水氾濫のような水災害の防止や,減災害を目的とし た予測問題は,水工学が扱う重要課題の一つである.こ の洪水予測では,トレードオフの関係にある"迅速"で かつ"高精度(推定値と誤差を含み)"な情報提供が求 められる.洪水予測を対象とした流出解析システムを構 築する上では,この"迅速"でかつ"高精度"な情報提 供という観点から,これまでに提案されてきた流出モデ ルの特徴を吟味し,流出解析システムを構築する必要が ある.表-1 は,流出モデルを大別した分布定数系モデ ルと集中定数系モデルの特徴をまとめたものである.

本研究の目的は,山地域規模の小・中流域を対象にし て,降雨流出現象を物理的に記述した分布定数系モデル (物理モデル)と等価な特性を有し,かつ計算負荷の小 さい新たな集中定数系モデル(概念モデル)を開発する ことにある.将来的には,洪水予測を対象に,山地域か ら都市域に至る広い流域を対象とした流出解析システム を構築する手法を確立する.

	長所	短所	対象流域の規模
分布定数系モデル	物理モデルであ るため,解析結 果への物理的解 釈が明らかであ る.	不確定なモデル パラメータが多 く,解析の際, 大きな計算負荷 がかかる.	時間的・空間的に変 化する降雨や,斜 面,河道での流れを 捉えられるため,広 い流域での採用に威 力を発揮する.
集中定数系モデル	概念的で単純な 構造をなすモデ ルであるため, モデルの理解と 利用が容易で, 計算負荷も小さい.	モデルパラメー タの物理的意味 づけが弱い.	降雨や流れの時間的 変化のみを捉え,空 間的には平均化して いるため,狭い小さ な流域での採用が望 ましい.

表-1 流出モデルの特徴

2.洪水予測を対象とした流出解析システム

日本のように人口と社会資本が下流域に集中する地域 での洪水予測では,山地域から都市域に至る広い流域を 対象とした流出解析システムが必要となる.本研究では, 以下のように,この広い流域を対象とした流出解析シス テムを構築する.

(1) 解析の対象となる流域の全体を幾つかのサブ流域と

- 河道とに分離(図-1).
- (2) サブ流域には,集中定数系モデルを採用.
- (3) 両岸に斜面が連結した河道には,分布定数系モデル を採用.

図-1 分割された流域の概念図

この流出解析システムでは,流域の一部を集中定数系モ デルで表現するため,計算負荷を抑えることが可能とな る.なお,流域末端(都市域の上流端)での水位(流出 量)の変動の遅れに影響を与える河道での流れを分布定 数系モデルで表現するため,流域の一部を集中定数系モ デルで表現したとしても,洪水予測の誤差をある範囲に 抑えることが期待される.つまり,この流出解析システ ムでは,集中定数系モデルと分布定数系モデがもつ短所 を互いに補いながら,"迅速"でかつ"高精度"な情報 提供を実現させることになる.加えて,流域の全体を分 布定数系モデルで表現した場合と比べて,システムの理 解と運用が容易になることが期待されるため,洪水予測 の技術力が不足する地域での流出解析にも十分に適用可 能となる.

このような流出解析システムの構築手法の確立は,学術的に見て重要性が高い.ただ,以下に示す二つの未解決課題を克服することが求められる.

- (A) どのような大きさのサブ流域に対して,どのような 集中定数系モデルを採用すべきか.
- (B) サブ流域に集中定数系モデルを採用した結果,流域 末端での洪水予測とその誤差が,流域の全体を分布 定数系モデルで表現した場合と比べて,どの程度異 なるのか.

これらは,サブ流域の大きさを制限することになる.本研究では,上記(A)の克服を中心に議論を進める.

3. サブ流域の流出特性を集約化した基本モデル

洪水予測を対象とした流出解析システム構築のために は、上記(A)の克服が第一の課題となる.本研究では、 サブ流域の流出特性を集約化した基本モデルの確率応答 特性と、集中定数系モデルの確率応答特性との比較に基 づいて、モデルの選択とモデルパラメータの定式化(物 理的意味づけ)を目指している.これは,観測された降 雨時系列データが確率的に変動することを踏まえて,各 モデルを確率微分方程式で表現し,時間変化する流量の 確率密度関数を与えるもので,高棹らの手法³⁾を一般化 した方法である.これまでのモデルパラメータの推定手 法は,推定に用いられた降雨時系列データの波形に依存 していた.しかし,本研究では,降雨を確率分布形に依 存しない確率変数として表現することで,任意の降雨時 系列を模擬することが可能である.従って,定式化され たモデルパラメータが普遍性を持つことが期待される. また

以下では, サブ流域の流出特性を表現した基本モデル の確率応答特性の推定に焦点を当て議論を進める.

3.1 地形のモデル化

実際の地図から流域の全体を河道と斜面とに分離して 得られた河道網構造は,一般に自己相似性を持つことが 知られている.図-2 は,実際の流域と同様に,その河 道網構造が自己相似性を持つ模擬されたサブ流域を表し ている.本研究では,図-2 のような模擬されたサブ流 域を採用し,先ず流域面積の変化と流域末端での流量の 1~4 次モーメントとの関係の定量化を目指す.なお,こ こで得られた結果は,定常状態の仮定と線形理論に基づ く従来の研究⁵⁾成果を含み,かつ非定常・非線形な条 件下にまで拡張された評価をも与える.

3.2 流出モデル

洪水予測を対象として山地域にあるサブ流域を考える と、河道にも斜面にも射流流れの等流近似が成立する. つまり、流出モデルとして河道にも斜面にも Kinematic Wave モデル(分布定数系モデル)の採用が可能となる. 次に、洪水時の流れの様子を考えると、河道では一次元 的な流れを仮定しても十分である.一方で、斜面では二 次元的に流れを扱う方が良い.しかし、二次元的な斜面 の流れを条件として理論的に確率応答特性を求めること は非常に難しい問題となる.そこで、斜面での流れは、 例えば藤田^のの研究成果から貯留型流出モデル(集中定 数系モデル)を採用することにする.

$$s_h = k_h q_h^{p_h} \tag{1}$$

$$\frac{ds_h}{dt} + q_h = r \tag{2}$$

ここで, s_h : 貯留高(L); q_h : 流出高(LT^{-1});r: 降雨 強度(LT^{-1});t: 時間(T); k_h :貯留係数($L^{1-p_h}T$); p_h : 貯留指数(1)を示す.また,斜面での流れに対しては Manning 則を仮定し,係数 $k_h \ge p_h$ に次式を用いる.

$$k_h = 0.625 \left(\frac{n_h}{\sqrt{i_h}}\right)^{\frac{5}{5}} \left(\frac{l_0}{4}\right)^{p_h} \tag{3}$$

$$p_h = 0.6 \tag{4}$$

ここで, n_h : 等価粗度($L^{-1/3}T$); i_h : 斜面勾配(1); l_0 : 二つの三角形斜面が連結された河道の長さ(L)を示す. なお,洪水時の流量の時間変化は,斜面よりも河道での 流れに支配される.従って,サブ流域の一部(斜面)を 貯留型流出モデルで置き換えても,流域末端での流量の 時間変化に与える影響は小さいことを付記する.

一方,河道での流れに対しては,横断面を矩形として Kinematic Wave モデルの採用が適切である.ただ,以後 の理論展開を容易にする観点から,本研究では,Chezy 則に従う集中化されたモデルを用いることにする.

$$s_i = k_i q_i^{\ \nu} \tag{5}$$

$$\frac{ds_{i+1}}{dt} + q_{i+1} = Aq_h + q_i + q_m \quad , i = (2l-1)m$$

$$\frac{ds_1}{dt} + q_1 = Aq_h \tag{6}$$

$$k_{i} = C^{-\frac{2}{3}} i_{i}^{-\frac{1}{3}} l_{0} w_{i}^{\frac{1}{3}}$$
(7)

$$p = \frac{2}{3} \tag{8}$$

ここで, s_i : 貯留量(L^3); q_i :流量(L^3T^{-1}); k_i : 貯留係数($L^{3(1-p)}T^p$); p: 貯留指数(1); C: Chezy 係数($L^{1/2}T^{-1}$); i_i : 河床勾配(1); w_i : 河幅(L); $m = 2^{n-k}$; k($\leq n$): 自然数; l($\leq 2^{k-1}$): 自然数を示す.なお,添 え字i($\leq 2^n$)は,河道(リンク)の位置を表す.例えば, i=1は上流端の河道(外部リンク)を, $i=2^n$ は下流 端の河道(内部リンク)をそれぞれ表す.図-2 は, n=3として模擬されたサブ流域となっている.また,i (>2)番目の河道での河床勾配 i_i および河幅 w_i については,これより上流側の流域面積 A_i の関数として次 式により与えるものとする.

$$i_i = i_1 (A_i / A)^{-0.5} \tag{9}$$

$$w_i = w_1 (A_i / A)^{0.5} \tag{10}$$

なお,二つの三角形斜面と河道からなる要素の面積 *A* および *A*,については,

$$A = 0.5l_0^2 \tag{11}$$

$$A_{i} = A \sum_{k}^{n} \left[\frac{\frac{i-1}{2^{n-k}} + 1}{2} \right] 3^{n-k} + iA$$

$$[]: Gauss 記号$$

$$(12)$$

により与えられる.

4.基本モデルの確率応答

周知のように,観測された降雨時系列データが確率的

に変動することから,降雨流出現象は確率過程に属する. 本研究では降雨強度の確率特性が既知の条件下で,基本 モデル(i番目の河道での単位幅流量 q_i)の確率特性

(平均値 \overline{q}_i と分散 σ_a^2)を理論的に推定する.

これまでに藤田ら⁷⁾を中心とした研究グループでは, 非線形確率微分方程式の解法に従事してきた.本研究で も同様に,その手法を用いて基本モデルの確率特性を推 定する.以下に,その誘導過程の概略を示す.

各変数(確率変数)を平均値(bar 記号)とそれからの偏差(tilde 記号)とに分離すると,降雨強度r,貯留高 s_h および貯留量 s_i は,

$$r = \overline{r} + \widetilde{r} \quad , \qquad \left\langle \widetilde{r} \right\rangle = 0 \tag{13}$$

$$s_h = \overline{s}_h + \widetilde{s}_h$$
, $\left< \widetilde{s}_h \right> = 0$ (14)

$$s_i = \overline{s}_i + \widetilde{s}_i$$
 , $\left< \widetilde{s}_i \right> = 0$ (15)

〈 〉: 期待値演算子

のように表される.さらに,基本モデルの非線形項(指 数型の確率変数)に対して,Brasら⁸⁾の近似式を採用す ると,

$$s_h^{m_h} = \alpha_h \overline{s}_h + \beta_h \widetilde{s}_h \tag{16}$$

$$s_i^{\ m} = \alpha_i \overline{s}_i + \beta_i \widetilde{s}_i \tag{17}$$

$$m_h = \frac{1}{p_h} \tag{18}$$

$$m = \frac{1}{p} \tag{19}$$

のように表される.パラメータ α_h , β_h , α_i および β_i については,原論文⁸⁾を参照されたい.式(13)から(17)を式(1),(2),(5)および式(6)に代入し,若干の計算を施すことで,基本モデル(i番目の河道での単位幅流量 q_i)の確率特性(平均値 $\overline{q_i}$ と分散 $\sigma_{q_i}^2$)と,斜面での

流出高 q_h の確率特性(平均値 \overline{q}_h と分散 $\sigma_{q_h}^2$)を与える 微分方程式は,以下のように与えられる.

$$\frac{d\overline{s}_{i+1}}{dt} + D_{i+1}\alpha_{i+1}\overline{s}_{i+1} = AD_{h}\alpha_{h}\overline{s}_{h} , i = (2l-1)m$$

$$+ D_{i}\alpha_{i}\overline{s}_{i} + D_{m}\alpha_{m}\overline{s}_{m}$$

$$(20)$$

$$\frac{d\overline{s}_{1}}{dt} + D_{1}\alpha_{1}\overline{s}_{1} = AD_{h}\alpha_{h}\overline{s}_{h}$$

$$\frac{d\overline{s}_{h}}{dt} + D_{h}\alpha_{h}\overline{s}_{h} = \overline{r}$$

$$(21)$$

$$\frac{di}{dt} \left\{ \frac{d\langle \tilde{s}_{i_{i}+1} \tilde{s}_{i_{2}+1} \rangle}{dt} + \left(D_{i_{i}+1} \beta_{i_{i}+1} + D_{i_{2}+1} \beta_{i_{2}+1} \right) \langle \tilde{s}_{i_{i}+1} \tilde{s}_{i_{2}+1} \rangle \\
= AD_{h}\beta_{h} \left\langle \langle \tilde{s}_{i_{i}+1} \tilde{s}_{h} \rangle + \langle \tilde{s}_{i_{2}+1} \tilde{s}_{h} \rangle \right) , \quad i_{1} \ge i_{2} \ge 1 \\
+ D_{i_{i}}\beta_{i_{i}} \langle \tilde{s}_{i_{i}} \tilde{s}_{i_{2}+1} \rangle + D_{i_{2}}\beta_{i_{2}} \langle \tilde{s}_{i_{1}+1} \tilde{s}_{i_{2}} \rangle \\
+ D_{m_{i}}\beta_{m_{i}} \langle \tilde{s}_{m_{i}} \tilde{s}_{i_{2}+1} \rangle + D_{m_{2}}\beta_{m_{2}} \langle \tilde{s}_{m_{2}} \tilde{s}_{i_{1}+1} \rangle \\
\frac{d\langle \tilde{s}_{i_{1}+1} \tilde{s}_{1} \rangle}{dt} + \left(D_{i_{i}+1}\beta_{i_{i}+1} + D_{1}\beta_{1} \rangle \langle \tilde{s}_{i_{1}+1} \tilde{s}_{1} \rangle \\
= AD_{h}\beta_{h} \left\langle \langle \tilde{s}_{i_{1}+1} \tilde{s}_{h} \rangle + \langle \tilde{s}_{1} \tilde{s}_{h} \rangle \right) , \quad i_{1} \ge 1$$

$$\left\{ \frac{d\langle \tilde{s}_{i_{1}} \tilde{s}_{i_{1}} \rangle}{dt} + 2D_{1}\beta_{1} \langle \tilde{s}_{1} \tilde{s}_{1} \rangle = 2AD_{h}\beta_{h} \langle \tilde{s}_{1} \tilde{s}_{h} \rangle \right\}$$

$$\frac{d\left\langle \widetilde{s}_{i_{i}+1}\widetilde{s}_{h}\right\rangle}{dt} + \left(D_{i_{i}+1}\beta_{i_{i}+1} + D_{h}\beta_{h}\right)\left\langle \widetilde{s}_{i_{i}+1}\widetilde{s}_{h}\right\rangle \\
= AD_{h}\beta_{h}\left\langle \widetilde{s}_{h}\widetilde{s}_{h}\right\rangle + D_{i_{1}}\beta_{i_{1}}\left\langle \widetilde{s}_{i_{i}}\widetilde{s}_{h}\right\rangle \quad , \quad i_{1} \ge 1 \\
+ D_{m_{i}}\beta_{m_{i}}\left\langle \widetilde{s}_{m_{i}}\widetilde{s}_{h}\right\rangle \\
\frac{d\left\langle \widetilde{s}_{1}\widetilde{s}_{h}\right\rangle}{dt} + \left(D_{1}\beta_{1} + D_{h}\beta_{h}\right)\left\langle \widetilde{s}_{1}\widetilde{s}_{h}\right\rangle$$
(22)

$$dt = AD_h \beta_h \langle \tilde{s}_h \tilde{s}_h \rangle$$

$$\frac{\left(\frac{ds_{h}s_{h}}{dt}\right)}{dt} + 2D_{h}\beta_{h}\left\langle\widetilde{s}_{h}\widetilde{s}_{h}\right\rangle = c\,\sigma_{r}$$

$$\overline{q}_{i} = D_{i}\alpha\overline{s}_{i}$$
(24)

$$\overline{q}_h = D_h \alpha_h \overline{s}_h \tag{25}$$

$$\sigma_{q_i}^2 = (D_i \beta_i)^2 \langle \tilde{s}_i \tilde{s}_i \rangle \tag{26}$$

$$\sigma_{q_h}^2 = \left(D_h \beta_h \right)^2 \left\langle \widetilde{s}_h \widetilde{s}_h \right\rangle \tag{27}$$

ここで,c:大きさ 1 の定数(T); σ_r^2 :降雨強度rの分散(L^2T^{-2})を示し,

$$D_i = \left(\frac{1}{k_i}\right)^m \tag{28}$$

$$D_h = \left(\frac{1}{k_h}\right)^{m_h} \tag{29}$$

を表す.なお,これらを誘導する際,降雨強度rの二次のキュムラント関数が必要となる.本論文ではrが互いに独立な確率変数として次式を用いた.

$$\widetilde{r}(\tau_1)\widetilde{r}(\tau_2) = \sigma_r^2 \delta(\tau_1 - \tau_2)$$
(30)
\delta : Dirac のデルタ関数

以上より,上に記した式(20)から(27)を解くことによ り,基本モデル(i番目の河道での単位幅流量 q_i)の確 率特性(平均値 \overline{q}_i と分散 $\sigma_{q_i}^2$)と,斜面での流出高 q_h の確率特性(平均値 \overline{q}_h と分散 $\sigma_{q_h}^2$)を求めることが可 能となる.次章では,これらの妥当性について検証する.

5.シミュレーション法による理論解の検討

式(20)から(27)の妥当性については,シミュレーション法に基づいて評価する.シミュレーション法の概要は,以下のとおりである.先ず,連続的に変化する降雨強度rの時系列に代わりに,離散的な観測降雨強度 $r_d(t)$ の時系列を模擬的に発生させる.これらは,以下の関係式を満足する.

$$r_{d,i} = \frac{1}{\Delta t} \int_{(i-1)\Delta t}^{i\Delta t} r(\tau) d\tau$$
(31)

$$r_d(t) = \sum_i r_{d,i} \left(u \left(t - (i-1)\Delta t \right) - u \left(t - i\Delta t \right) \right)$$
(32)

u(t):ステップ関数; Δt :観測間隔

式(32)を直接式(1),(2),(5)および式(6)に代入し流出量 (ハイドログラフ)を推定した後,標本平均により時間 変化する流量の確率特性を求める.ここで, $r_{d,i}$ の確率 分布が問題になる.本論文では, $r_{d,i}$ の平均値 $\bar{r}_{d,i}$ から の偏差 $\tilde{r}_{d,i}$ が指数分布に従い,次式で表された確率密度 関数を満足するものとする.

また,r が互いに独立な確率変数である場合, $r_{d,i}$ の確率特性(平均値 $\bar{r}_{d,i}$ と分散 $\sigma_{r_d}^2$)とrのそれらと間には,以下の関係が成立する.

$$\overline{r}_{d,i} = \frac{1}{\Delta t} \int_{(i-1)\Delta t}^{i\Delta t} \overline{r}(\tau) d\tau$$
(34)

$$\sigma_{r_d}^2 = \frac{c\sigma_r^2}{\Delta t}$$
(35)

図-3($n \le 7$)は,式(20)から(27)を解くことにより求められた基本モデル(i番目の河道での単位幅流量 q_i)と斜面での流出高 q_h の確率特性(図中の破線)と,シミュレーション法により推定されたそれら(図中の実線)との比較を表す.なお,計算条件としては,継続時間 24(hr)の矩形降雨(平均降雨強度が 5mm/hr),観測間隔 $\Delta t = 1$ (hr),式(34)の定数 $\lambda = 0.4$ を用いた.他の条件は,以下のとおりである.

- $n_h = 0.10$
- $i_h = 0.05$
- $l_0 = 2000 \,(\text{m})$
- $i_1 = 0.05$
- $w_1 = 1 \,(m)$
- C = 40

また,式(20)から(27)を解く際,式(16),(17)のパラメー タ α_h , β_h , α_i および β_i については,

- $\alpha_h = \overline{s}_h^{m_h 1}$
- $\beta_h = \overline{s}_h^{m_h 1}$
- $\alpha_i = \overline{s_i}^{m-1}$
- $\beta_i = m \overline{s_i}^{m-1}$

により与えた . 図-3 より , nが増加 , つまりサブ流域 の流域面積が大きくなっても , 両者の適合度は良好であ るといえる . 従って , 式(20)から(27)により , 広いサブ 流域に対して基本モデル (i 番目の河道での単位幅流量 q_i)の確率特性 (平均値 \overline{q}_i と分散 $\sigma_{q_i}^2$)を推定するこ とが可能であるといえる .

6. まとめ

本論文では,洪水予測を対象とした流出解析システム 構築に伴い,サブ流域の流出特性を集約化した基本モデ ルと等価な特性を有する集中定数系モデルの提案(モデ ルパラメータの物理的意味付け)を目的として,基本モ デル(i番目の河道での単位幅流量q_i)の確率特性(平

均値 $ar{q}_i$ と分散 $\sigma_{q_i}^{\ \ 2}$)を与える理論式を与え,その妥当

性をシミュレーション法を用いて示した.

今後,基本モデル(i番目の河道での単位幅流量 q_i) の確率密度関数の推定と、これと等価な特性を有する集 中定数系モデルの提案(モデルパラメータの物理的意味 付け)を行う予定である.

参考文献

1) 独立行政法人土木研究所: ユネスコセンター設立推 進本部ニュースレター, No. 1, http://www. icharm. pwri.go.jp/html_j/docu/index.html, 2004.

- 2) 長谷川和義ら: 平成 15 年台風 10 号による北海道日 高豪雨災害の概要について、水工学論文集,第49巻, pp. 427-432, 2005.
- 高棹琢馬,宝馨,楠橋康広:洪水流出モデルの確率 過程的評価に関する研究,京都大学防災研究所年報, 第28号 B-2, pp. 221-235, 1985.
- Mandelbrot B and Viscek T.: Directed recursive models for fractal growth, J. of Physics A, Vol. 22, L377-383, 1989.
- I. Rodrigez-Iturbe and J. B. Valdes: The geomorphologic structure of hydrologic response, Water Resources Research, Vol. 15, No. 6. pp. 1409-1420, 1979.
- 藤田睦博: 斜面長の変動を考慮した貯留関数法に関 する研究, 土木学会論文報告集, 第 314 号, pp. 75-86, 1981.
- 7) 藤田睦博, 工藤睦信, 中尾隆, 橋本識秀: 貯留型流 出モデルの確率応答に関する研究 -降雨量が時間的 に独立な確率過程の場合-, 土木学会論文集, No. 515/II-31, pp. 1-11, 1995.
- Bras, R. L. and Georgakakos, K. P.: Real Time Nonlinear Filtering Techniques in Streamflow Forecasting -A Statistical Linearization Approach-, Third International Symposium on Stochastic Hydraulics, pp. 95-105, 1980.

図-3 シミュレーション結果 (左図:平均値,右図:分散)