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ABSTRACT 
This paper presents the linear stability analysis of natural roll 
waves. The open channel flow is analyzed by mixing length 
turbulent model and perturbation equations are solved in order 
to get the variation of Froude number vs the corresponding 
wave number of the roll waves. Spectral collocation method 
with the Chebyshev polynomials is used in solution process. 
The variation is compared with experimental data which were 
obtained from conducting experiments in open channels by 
Richard R. Brock(1) (1967).      
 
1. INTRODUCTION 
Roll waves can be described as large amplitude disturbances 
which are developed on turbulent water flows. There are two 
types of roll waves as natural roll waves and periodic 
permanent roll waves. Natural roll waves can be seen in 
natural flows such as ice channels, gravity currents in the 
laboratory, ocean and lakes Balmforth N.J and Mandre S.(2) 
(2004).  
In this study a mathematical model is proposed to explain the 
variation between the Froude number and the wave number 
with the use of logarithmic velocity distribution. Also mixing 
length turbulent model is used which was proposed by 
Colombini (3)(2004). 
 
2. FORMULATION 
Turbulent flow in an open channel can be expressed using the 
Navier – Stokes equations and continuation equation of the 
form of non dimensional manner as follows. 
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Where x and y are the stream wise and normal to the stream 
wise direction respectively. U and V are the components of the 
velocity in x and y direction respectively, S and P are the 
average bed slope and the pressure respectively, Tij (i, j = x, y) 
is the Reynolds stress tensor. All above equations are non-
dimensionalized as  
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Where U*
f0 and H*

0 are the friction velocity and the flow 
depth in the base state flat bed condition. The Reynolds stress 
tensor is expressed by using the mixing length turbulent 
model as follows. 
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Where νT is the eddy viscosity normalized by U*
f0 H*

0, l,z and 
H are the mixing length, the bed elevation and the flow depth 
normalized by H*

0 and κ is the Karman constant which is 0.4 
in this analysis. 

 
Following variable transformation is introduced in order to 
describe the boundary conditions of water surface and bottom. 
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Where R is the reference level at which the velocity vanishes 
in the logarithmic velocity distribution. Then the 
nondimensional mixing length l can be modified as follows. 
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Figure 1. The conceptual diagram of flow and the 
coordinate system
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( ) (1 )R z Rl H
H H

κ η η−
= + − −  

U.ens = 0 at η = 1 
ens.T. ens = 0 at η = 1 
ets.T. ens = 0 at η = 1 
U.enb = 0 at η = 0 
U.etb = 0 at η = 0 
 
Where U is the velocity vector, ens and ets are unit vectors 
normal and tangential to the water surface respectively, enb 
and etb are unit vectors normal and tangential to the bottom 
respectively. T is the stress tensor expressed as follows. 
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3. THE ONE DIMENSIONAL BASE STATE SOLUTION 
The base state solution is obtained from the above mentioned 
Navier Stokes equations using the flat bed normal flow 
conditions. The parameters are reduced to (U, V, H, z, R) = 
(U0, 0, 1, 0, R0) 
 
The governing equations are reduced and solved using 
following boundary conditions to get the logarithmic velocity 
distribution as mentioned. 
U = 0, Txy0 = 1 - R0 at η = 0 

0
0

0

1 ln( )RU
R

η
κ

+
=  

Integration of the above logarithmic velocity distribution can 
be used to obtain the friction law coefficient; C as follows. 
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Where U*
a0 is the depth averaged velocity in the base state. 

 
4. LINEAR STABILITY ANALYSIS 
Variables are expanded as follows in order to get the 
perturbation solution.  
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Where A is the amplitude of the perturbation, which is a 
infinitesimally small. The governing equations are reduced to 
the following and the equations are shown using some linear 
operators due to lack of the space. 
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The perturbation is assumed to be expressed by 

[ ]1 1 1 1 1 1
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 Where α and Ω are the wave number and the complex angular 
frequency of the perturbation, respectively. With the help of 
the Chebyshev polynomials governing equations are solved 
mathematically. 
Figure 2 shows the contours of the growth rate of perturbation 
Im[Ω] in the α – F plane. Also the experimental data is 
overlapped in the same figure in order to do the comparison 
with the theoretical results. The experimental data are 
obtained from the experiments which were done by Richard R. 
Brock(1) (1967) and the series of Froude numbers are shown 
against the wave numbers at several stations along the open 
channel. 
    

 
     Figure 2. The contours of Im[Ω]. C-1=20 and 

experimental data 
 

 
5. RESULTS AND DISCUSSION 
It has been seen from the Figure 2 that the experimental 
values are farley ongoing with the dominant wave numbers 
that have been obtained from the theoretical analysis. Also 
with the time the experimental values are deviated from the 
theoretical contour map. This may be due to the non linearity 
of the situation. 
 
6. REFERENCES 
(1)Richard R. Brock (1967), Development of roll waves in 
open channels, Report No. KH-R-16 
(2)Balmforth N.J and Mandre S. (2004), Dynamics of roll 
waves, J. Fluid Mech. 514, 1–33 
(3)Colombini, M. (2004). Revisiting the linear theory of sand 
dune formation. J. Fluid Mech. 502, 1-16 
  

(i) 

(j) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

平成19年度　土木学会北海道支部　論文報告集　第64号




