箱形断面 CFRP 梁の FEM 解析と耐荷力推定

Finite element analysis and estimation of failure load of CFRP box beams

北海i	首大学大学院工学研究科	正会員	松本高志	(Takashi Matsumoto)
北海道大学工学部土木工学科		○学生員	櫻庭浩樹	(Hiroki Sakuraba)
北海道大学大学院工学研究科		F会員	林川俊郎	(Toshiro Hayashikawa)
(株)	清水建設	正会員	稲田裕	(Hiroshi Inada)
(株)	清水建設	正会員	吉武謙二	(Kenji Yoshitake)
(株)	清水建設	正会員	杉山博一	(Hirokazu Sugiyama)
(株)	清水建設	F会員	後藤茂	(Shigeru Goto)
(株)	清水建設	F会員	石塚与志雄	(Yoshio Ishizuka)
(株)	東レ	正会員	鈴川研二	(Kenji Suzukawa)
(株)	東レ	正会員	松井孝洋	(Takahiro Matsui)

1. はじめに

Carbon fiber reinforced plastic(CFRP)は、現在航空宇宙分 野において広く用いられている材料であり、土木分野に おいても既存の材料に変わる材料として適用が研究され ている。CFRP は高い耐久性や材料強度を有しているが、 高い異方性を持っていることから、既存の材料と比べ設 計は複雑である。等方性材料と違い CFRP はせん断弾性 係数やせん断強度が軸方向の特性値と比べて著しく低く、 この特性が従来までの設計法や仮定の適用を妨げている。

現状では修復や補強材料としての利用がほとんどであ り、主要部材として設計された例は少ない。よって建設 構造物を対象とした設計を可能にするためには、損傷、 破壊に基づいたモデルの構築と解析による再現が必要で ある。

現在までに、解析に先立って CFRP を用いた実験、検 討が行われている¹⁾。本研究ではこの実験を FEM により 再現し、実験との比較を行っている。その結果から実験 で破壊が生じている箇所の応力状態を把握し、CFRP の 材料試験から得られた特性値と理論式の応力を用いて箱 形断面 CFRP 梁の耐荷力を推定することを目的としてい る。

2. 既存の実験

2.1 実験概要

既存の実験では CFRP の矩形の外殻にコンクリートを 中詰したものを対象としている。CFRP は 1 辺 100mm、 厚さ 5mm の正方形断面で長さが 1000mm である。載荷 方法は 4 点曲げ、スパン長 850mm、曲げスパン長 100mm、 せん断スパン長 375mm である。図-1 に側面図(奥行き 方向が 3 軸方向を示す)、図-2 に断面図を示す。

CFRP は梁軸方向と周方向の繊維比率が異なる 5 種類 の繊維配向(S1~S5)のものが用いられている。S1 が梁軸 方向の繊維比率が最も多く、番号が大きくなるにつれ周 方向の繊維比率が増える。S3 は梁軸、周方向が同比率、 S5 は S1、S4 は S2 と梁軸方向と周方向の比率が逆になっ ている。また中詰の有無(中詰無しの場合を e と表示す る)、コンクリートの種類(普通強度 N、低強度 L コン クリート)、および、曲げモーメントと軸力の比率である 曲げ軸力比(∞、0.32、0.16、0.04)をパラメータにした 試験体で行われている。以下の検討では、'S1-32-N'のよ うに試験条件を繊維配向-曲げ軸力比-コンクリート強度 で表す。

2.2 破壞性状

実験では、スパン中央での曲げ引張破壊が想定されて いたが、曲げ引張破壊は発生せず、載荷点位置において、 載荷板のせん断スパン側の上フランジ CFRP 部が面外に

図-2 断面図

表-1 CFRP 材料特性值²⁾

		仮定値					
11方向引張強度	1790	33方向引張強度	62				
11方向圧縮強度	-515	33方向圧縮強度	-173				
22方向引張強度	295	E3	8500				
22方向圧縮強度	-173	23方向せん断強度	25.0				
E1	110800	31方向せん断強度	25.0				
E2	20900	G23	2500				
12方向せん断強度	36.1	G31	2500				
G12	3500	μ23	0.460				
μ 12	0.13	μ13	0.432				
さま 弾性の 数の 単位 MD。							

強度、弾性係数の単位:MPa

折れたような破壊性状であった。破壊発生のメカニズム として、CFRP が圧縮強度に達する前に、局所的な層間 剥離、せん断破壊などによる破壊の発生が推測されてい る。

3. FEM 解析

3.1 モデルの概要

実験は様々な試験条件で行われているが、基本となる 軸力、中詰なしの試験条件で、また繊維配向のバランス が良い S3 に着目した。よって FEM 解析を行う試験条件 のモデルは'S3-∞-e'とした。

解析では、直交異方性の8節点ソリッド要素を用いた。 梁は1/4対称モデルとしている。モデルでは実験と対応 させるため、載荷点と支点には幅50mm、厚さ15mmの 鋼板を用いて CFRP と剛結している。FEM ソフトは MSC.Marcを使用した。CFRPの破壊規準には、Tsai-Wu の破壊規準³⁾を用いている。この破壊規準は CFRPのよ うな直交異方性の積層板において、6 つの応力状態を考 慮できる式であり、材料強度から異方性を考慮した係数 を得ることができる。表-1 に実験から得られた特性値と 文献等から仮定された特性値を示す。1 が梁軸方向、2 が周方向、3 が積層方向である。表-1 より CFRP は11 方 向引張強度が高く、せん断強度が低いことがわかる。

3.2 FEM の結果

FEM では荷重-たわみ曲線において梁の剛性が大きく 変化する点を耐荷力としている。図-3 に S3-∞-e の実験 値と解析の比較を示す。実験において耐荷力は 78.9KN、 解析では 84.2KN であった。実験では特にたわみが 2mm 程度までの初期の傾きが小さい点に、FEM との差が見ら れる。載荷中盤の傾きは FEM の方が大きく、この誤差 は載荷初期の変形による影響⁴⁾だと思われる。

Tsai-Wu の破壊規準による FEM の破壊指標(failure index)では、上フランジの載荷板付近において高い値を 示していた。実験では載荷板端部せん断スパン側で CFRP が面外に折れたような破壊であったことから、 FEM でも上フランジに着目し、載荷板端部せん断スパン 側から1節点離れた節点の応力状態を把握した。その結 果、圧縮応力とフランジ周方向の面内せん断に加え、載 荷板の影響による局所的な面外せん断が梁の破壊に寄与 していることが確認できた。

図-4にFEMのP=35.9KN時における上フランジ中央部 の梁軸方向圧縮応力と面外せん断応力の分布を示す。載 荷板の端部は350と400mmであり、その影響を受けて 端部から1節点離れた節点では理論値より高い圧縮応力 が生じていることが分かる。200~300mm付近と、載荷 板と結合している節点では理論値より低い値が得られて いる。載荷板から離れた0~200mmでは理論値とほぼ一 致している。また面外せん断は載荷板付近で卓越して発 生していることがわかる。それ以外では破壊に影響する ような大きさは見られず、ほぼ0になっていることから 載荷板による局所的なものだと考えられる。よって圧縮、 面内せん断および面外せん断応力の3つの応力に着目し、 実験CFRP梁の耐荷力推定を行っていく。

4. 耐荷力推定手法

4.1 推定手法の概要

梁の耐荷力推定方法としては、理論式による各応力と Tsai-Wu 破壊規準式を用いて行う。FEM の結果と実験結 果を考慮し、着目点は載荷板から1節点離れた線上の、 上フランジ中央(S=0)、中間(S=25)、角部(S=50)と した。載荷板幅は50mmを想定し、着目点までの長さを 343.75mmとしている。断面の着目点を図-5に示す。ま たFEM を行ったケースは'S3-∞-e'のみであるが、実験の パラメータを変化させた全試験体について、耐荷力の推 定を行っている。

図-5 断面着目点

4.2 耐荷力の推定式

理論式は、梁理論による圧縮応力、曲げに伴うフラン ジ周方向の面内せん断⁵⁾を用いている。圧縮応力の載荷 板による応力集中は考慮していない。局所的に生じてい る面外せん断応力は理論式から求められないので、チモ シェンコ梁理論⁵⁾によるせん断応力を単純に仮定した。

実験パラメータの中詰ありの場合には、CFRP とコン クリートのヤング係数比を用いて、換算断面を算定して いる。また実際の中詰コンクリートにはひびが入ってい ることを想定し、引張り側のコンクリートの断面を無視 した断面も算定した。前者を全断面有効、後者をひび割 れ断面と称す。

以上より算定断面が決定されれば、応力を求めること ができ、Tsai-Wu の破壊規準を満たす応力状態から梁の 破壊荷重を推定することができる。Tsai-Wu の破壊規準 は6つの応力を考慮できる式であるが、推定式において は11方向圧縮応力、31方向面外せん断応力、12方向面 内せん断応力のみを考慮しているため、(1)のような式 になる。係数 F は圧縮、引張強度 (σ_1^c , σ_1^T)と、面 内、面外せん断強度 (τ_{12}^u , τ_{31}^u)から決定される。

$$F_{1}\sigma_{1} + F_{11}\sigma_{1}^{2} + F_{55}\tau_{31}^{2} + F_{66}\tau_{12}^{2} = 1$$
(1)
$$F_{1} = \frac{1}{\sigma_{1}^{T}} + \frac{1}{\sigma_{1}^{C}} F_{11} = -\frac{1}{\sigma_{1}^{T} \cdot \sigma_{1}^{C}} F_{55} = \frac{1}{(\tau_{31}^{u})^{2}} F_{66} = \frac{1}{(\tau_{12}^{u})^{2}}$$

上式に応力算定式を代入することにより、(2)の推定 式が得られる。 α 、 β は応力算定式と異方性係数Fから 決定される。

$$P_{\text{max}} = -\frac{\beta}{2\alpha^2} + \frac{1}{\alpha}\sqrt{1 + \frac{1}{4}\left(\frac{\beta}{\alpha}\right)^2}$$
(2)

5. 結果と考察

5.1 中詰なし CFRP 梁

結果のグラフでは実験の破壊荷重を実線、破壊荷重推 定値を点線で表している。図-6のCFRP-∞-eでは、着目 点を角部にした S=50のケースで破壊荷重に近い結果が 得られた。なお S2-eの実験は行われていない。S=50で はフランジの面内せん断が最大値になるため、S=0、25 に比べて破壊荷重に近い推定値が得られている。S1、S3、 S4、S5の破壊荷重との差はそれぞれ11、13、5、4%であ り梁軸方向の繊維比率が少ない方が、誤差は少なかった。

表-2に着目点S=50の各応力の破壊寄与分を示す。S1、 S3 では圧縮応力よりせん断応力の方が寄与分は高いこ とが分かる。せん断応力では、面外せん断 31 より面内せ ん断 12 の方が高い値を示している。S1、S3 と比べ S4、 S5 で着目点をS=0からS=50にした場合の推定値の減少 が少ないのは、S1、S3 より破壊荷重に対しての圧縮寄与 分が卓越し、せん断寄与分が低いためである。またS=0 では面内せん断が0になるので、圧縮応力と面外せん断 のみを算定していることになる。よって耐荷力を推定す る上で、面内せん断を考慮することは有効であると思わ れる。

5.2 中詰あり CFRP 梁

図-7、8の中詰あり CFRP-∞-N、L では、S=50 におい て全断面有効(以下 Gr と称す)で破壊荷重との誤差は 13~48%、ひび割れ断面(以下 Cr と称す)では 2~12% となり、Cr の方が破壊荷重との誤差が少ない結果になっ た。

表-2 破壊応力寄与分

着目点S=50	破壊荷重時応力状態								
実験ケース	11圧縮	31せん断	12せん断	合計					
S1-e	40.6%	19.0%	25.3%	84.9%					
S3-e	36.0%	20.3%	25.8%	82.1%					
S4-e	75.1%	14.3%	18.2%	107.6%					
S5-e	76.0%	7.6%	9.7%	93.3%					

図-9 CFRP-(0.32、0.16、0.04)-N、L 全断面有効

図-10 CFRP-(0.32、0.16、0.04)-N、L ひび割れ断面

実験のコンクリートにひびが入っていることを考慮して いる Cr の方が適しており、Gr では過大な断面を算定し ていると考えられる。Cr では引張側のコンクリート断面 を無視することによりコンクリートの断面積が小さくな り、せん断寄与分が大きくなっている。また中詰なしの ケースと同様に S4、S5 において他のケースと比較する と着目点を角部にした場合の推定値の減少は少なくなっ ている。

5.3 中詰、軸力あり CFRP 梁

図-9、10 に軸力、中詰めあり CFRP-(0.32、0.16、0.04)-N、 L の結果を示す。S=50 において Gr で破壊荷重との誤差 は 4~49%、Cr で 1~28%となった。軸力が作用していな いケースに比べ誤差のばらつきが大きい結果となった。 特に普通強度コンクリートNの16、32 と S4、S5 では実 験値より低い値となっている。軸力が作用している場合 において、Cr は過小な断面であると思われる。また低強 度コンクリートLのケースでは実験値に近い結果が出て いるが、推定値では普通強度コンクリートNとほぼ同じ 値が得られており、実験を再現できたわけではないと考 えられる。軸力が作用しているケースにおいては、ひび 割れ断面でもある程度の再現性は見られるが、より誤差 を少なくするためには FEM での応力状態の把握を行っ ていく必要がある。

6. まとめ

以上のように本研究では、FEM で既存の実験を再現し、 破壊に寄与している応力を把握することで、実験 CFRP 梁の破壊荷重の推定を行っている。結果をまとめると以 下のようになる。

- FEMのモデルでは、載荷板による局所的な面外せん 断応力が見られ、CFRP梁の破壊に寄与していることを確認できた。
- 破壊荷重の推定では、せん断応力を考慮することが 有効であった。
- 3) 軸力が作用していない CFRP 梁では、実験の耐荷力 を概ね再現することができた。
- 軸力が作用している条件では、作用していない場合 より誤差が見られるためさらに検討する必要がある。

今後の課題としては、単純な仮定に基づいている面外 せん断応力の算定手法の改善や箱形断面梁の設計法の確 立が必要だと考えられる。

【参考文献】

- 稲田裕他: CFRP を用いた合成セグメントの強度特 性に関する実験的検討、土木学会第62回年次学術講 演会、CS15-009、2007.
- Bishnu Prasad Gautam 他: Shear behavior of concrete-filled CFRP box beam、土木学会第 62 回年次 学術講演会、CS15-008、2007.
- 3) 邊吾一、石川隆司:先進複合材料工学、培風館、 pp.25-41、2005.
- Bishnu Prasad Gautam: Finite element analysis on deformation damage and failure mechanisms of concrete-filled CFRP box beam under transverse and axial loads, Master thesis, University of Tokyo, 2007.
- 5) 長谷川彰夫、西野文雄: 土木学会編、新体系土木工
 学 7構造物の弾性解析、pp.82-110、1983.