札幌軟石を用いた円弧アーチ橋の静的載荷実験

Static loading experiment of a stone-masonry arch bridge by Shikotsu welded tuff

北海道大学大学院工学研究科	F 会員	林川俊郎(Toshiro Hayashikawa)
北海道大学工学部土木工学科	学生員	清水貴裕 (Takahiro Shimizu)
北海道大学大学院工学研究科	正会員	及川昭夫 (Akio Oikawa)
北海道大学大学院工学研究科	正会員	松本高志 (Takashi Matsumoto)

1. まえがき

創成橋は100年以上の歴史を持つ石造アーチ橋で あり、豊平橋と共に札幌市内の橋の中で最も古い橋 である。創成橋は明治2年、元々用排水路として造 られていた大友堀に丸太を並べて、板を敷いただけ の橋が架けられたことから始まり、当時は名の無い 丸太橋であった。その後明治4年、木橋に架け替え られ、明治42年の流失を機会に明治43年、石造ア ーチ橋となった。現在では創成川北アンダーパス、 南アンダーパス連結工事に伴い、平成19年に解体 されて以来、平成22年の完成に向けて創成橋復元 計画が進んでいる。

しかし創成橋のように石橋を解体、復元する際、 北海道において石橋の解体、復元実績が無いばかり か技術情報も少ないのが実情である。また北海道以 外でもこのような研究はあまりされておらず、石橋 の解体や復元は石工の経験によるところが大きい。

以上より本研究は石工の経験からではなく数値 に裏付けされた設計基準を確立することを目的と し、その基礎的研究として石造アーチの静的載荷室 内実験を行い、石造アーチの構造特性を調査・検討 する。また円弧アーチに使用する石材としては札幌 軟石を用いることとし、創成橋復元に向けた基礎デ ータを得ることを目的とする。

2. 石造アーチ縮小模型作成

2.1. 石造アーチの断面諸元

石造アーチは表-1、図-1のような創成橋の相似比 で作成した。室内で実験を行うこと、輪石の大きさ を考慮して支間長を236.29cmとし、アーチ形状は欠 円アーチとした。

2.2. 札幌軟石の諸元

札幌軟石は表-2、図-2 のものを使用した。^{1)、2)} 輪石は左右 12 個ずつ使用し、要石は設計誤差を考 え調整できるような寸法のものを使用した。輪石、 要石ともに石目を考慮して設置し、札幌軟石は十分 乾燥させたものを使用した。

2.3. 石造アーチ縮小模型作成工程^{3) 4) 5)}

まず実験によっては数十 tf の荷重をかけることを予 想して、その荷重にも耐えられるような橋台を作成した。 橋台の土台には写真-1のような縮小模型の支間長より

表-1 石造アーチ縮小模型の断面諸元

支間長	236.29 cm
拱矢	38.70 cm
角度	36.3°
半径	199.68 cm
弧長	252.85cm

図-1 円弧アーチ縮小模型

図-2 輪石と要石の断面寸法

やや長いH鋼を採用し、橋台は板厚約3cmの鉄板を溶接 し完全固定とした。

次に写真-2 のように角材と厚さ 1.5cm のコンパネで支 保工を作成した。輪石、要石の奥行きが 30cm であること を考慮して、支保工の奥行きをそれよりやや狭い 28cm とした。

支保工作成後、両端から順に左右 12 個の輪石を並べて いき、最後に要石を挿入した。要石を挿入する際、写真 -3 のように、ジャッキアップによって全体をやや広げ、 約 10mm の上げ越しを行った。⁶⁾

要石挿入後、写真-4のように輪石間隔がほぼ同じにな るよう調整し、間に粒径が2~3mm 程度の珪砂3号を充填 した。その後支保工をゆっくりとはずし、写真-5のよう に石造アーチ縮小模型を作成した。

写真-1 日鋼と橋台

写真-2 支保工

写真-3 ジャッキアップと要石挿入状態

写真-4 輪石と珪砂充填

写真-5 縮小模型完成(集中荷重)

3. 集中荷重載荷実験

石造アーチ縮小模型作成後、要石に写真-6のように集 中荷重を載荷した。約1tfの載荷をすると図-3の位置に 隙間が生じ、特に円弧の1/4の部分で写真-7のように大 きな隙間が生じた。この原因については現在検討中であ る。

4. 等分布荷重載荷実験

石造アーチ橋の構造的特性を調査するために少なくと も弾性領域である 5tf 程度までの載荷を行うこととし、 等分布荷重による実験を行った。これは荷重を等分布荷 重にすることで、隙間部での上向きの力を抑えることが でき、アーチ形状を保つことができると考えたためであ

写真-6 集中荷重の載荷方法

写真-7 載荷後に生じた輪石間の隙間

図-3 隙間とその位置

る。さらに、実際の創成橋はスパンドレルを有するアー チ橋であることを考慮に入れて、等分布荷重による載荷 実験を行う。また少なくとも5tf程度までとした理由は、 5tf 程度まで載荷実験を行うことで荷重 - 変位関係にお いて線形性を確認することを目的としているためである。

4.1. 石造アーチ縮小模型作成工程(等分布荷重)

等分布で荷重を載荷するために、以下のような工程で 載荷実験を行った。ただし、集中荷重載荷実験で上げ越 しを約10mmとしたが、上げ越し量を大きく検討しすぎ たため、アーチ形状を考慮して5mmとした。また集中 荷重による載荷実験と同様の供試体を等分布荷重による 載荷実験でも使用し、輪石間も集中荷重の場合と同様、 珪砂3号を充填した。

まずスパンドレル部を作成した。スパンドレル部は約 10tf まで確実に耐えることができ、かつ加工しやすく自 立することを条件とし、耐熱用発泡スチロールを採用し た。本研究で使用した耐熱用発泡スチロールは圧縮強度 が2~3kgf/cm²であるため、10tf 程度という条件に十分足 るとした。耐熱用発泡スチロールは写真-8のようにアー チ形状に沿って加工し設置した。その際、耐熱用発泡ス チロールが札幌軟石の角で傷つくことを防ぐために、薄 い鋼板をスパンドレル部と札幌軟石との間に設置した。

スパンドレル部を設置後、スパンドレル部の上に H 鋼 を載せ、その上から集中荷重をかけることで等分布荷重 を再現した。写真-9 に石造アーチ縮小模型の作成過程と 最終完成形状を示す。また H 鋼は総体積 0.048m³、総重 量約 370kg のものを使用した。またダイヤルゲージによ るたわみ計測箇所は、アーチ下部に 7 ヶ所、両端に 1 ヶ 所ずつ設置した。

写真-9 縮小模型完成(等分布荷重)

4.2. 载荷実験結果(等分布荷重)

等分布荷重によるたわみ曲線の再現性を確認するた めに 0.5tf 毎に 5tf まで載荷し、その後除荷する静的実験 を計 5 回行った。第 1 回、第 3 回、第 5 回の載荷実験に より得られた、たわみ曲線を図-4 に示す。

図-4 から載荷回数を重ねるにつれて、たわみ曲線の左 右対称性が確認できる。また第3回目以降と比べて第1 回目は、変位が大きくなる傾向にある。この理由として、 初期不整が主たる要因であると考えられるが、図-5のように輪石間の珪砂は等分布荷重載荷前、粗な状態にある が、載荷後は密な状態となることも要因の一つであると 考える。

図-6 は荷重 - 変位関係をグラフにしたものである。こ の図-6からも図-4 と同じように載荷回数を重ねるにつれ て、たわみ曲線の左右対称性が確認できる。また荷重が 増加するにつれてグラフが下に凸の曲線から直線に近づ いていき、約 2tf を過ぎたあたりから線形性が読み取れ る。

荷重 - 変位曲線が下に凸となる理由として、まず札 幌軟石が空隙に富む石材であることが考えられる。石 灰岩や石炭など空隙や潜在的な割れ目を多く持つ岩石 は初期載荷時に硬化する傾向があり、荷重 - 変位曲線 は初期時、直線ではなく曲線を描く。⁷⁾⁸⁾

さらに輪石間の接触面積も曲線となる原因の一つと 考えられる。供試体が不連続体であるため荷重載荷前は 図-5のように輪石同士の接触面積が小さい。ここに載荷 が始まると少しずつ輪石間の隙間が狭まっていき、輪石 同士の接触面積が大きくなる。接触面積が大きくなると 応力は小さくなるため、載荷によって除々に接触面積が 大きくなるにつれて、変位の変化量が徐々に小さくなる。

図-5 輪石間の珪砂の移動

< 載荷後 >

<載荷前>

また載荷によって輪石間に充填した珪砂が圧縮され細か くなり密になることで、図-5のように接触面積が大きく なり変位の変化量が除々に小さくなる。以上より輪石間 の接触面積も曲線となる原因の一つと考える。

5.残留変位

等分布荷重の実験では 5tf まで載荷を行ったが、その 後除荷すると、図-7のような塑性履歴を得た。鋼材など では除荷の際、荷重 - 変位曲線は図-7のような軌跡にな らず、図-8のように線形性が現れている部分と平行した 軌跡となる。この原因として接触面積が関係していると 考える。これは徐々に除荷することで輪石間の接面積は 小さくなり、変位の変化量が増加したと考えられる。 6.結論

6.1. 縮小模型作成工程

上げ越し量はこの規模の供試体であれば 2~3 mmで良 いことや、支保工も簡易ではあったが本研究で作成した もので十分足ることも確認された。また、手動式ジャッ キを用いて上げ越しを行ったが、これもこの規模であれ ば、作成した簡易なもので十分足ることが確認された。

6.2.载荷実験

載荷実験を行うことで、たわみ曲線の再現性が確認さ れた。しかし、第一回目の等分布荷重による載荷実験は 初期不整等のため、変位が大きくなった。

荷重 - 変位関係では初期載荷時、下に凸の曲線を描く こと、約 2tf 以上の載荷で線形性をもつことが確認され た。これは石材の性質が影響したと考える。空隙が多い 岩石は初期載荷時、硬化する傾向があり、荷重 - 変位関 係は曲線となる。これ以外にも供試体が不連続体である ため、輪石同士の接触面積が載荷状況によって変化する ことで、変位変化量に影響し、曲線となったと推測され る。

また札幌軟石は空隙に富む石材であり、空隙や潜在的 な割れ目を持つ岩石は載荷されることで硬化する傾向が ある。これにより硬化現象が生じたと考える。

載荷後、除荷を行うことで、塑性履歴をもつことが確 認された。これは除々に除荷することで接触面積が減少 するため、変位変化量に影響したと推測される。

7.今後の課題

今後の課題として、本研究では珪砂を使用したが、こ れをモルタルにしたり、輪石の形を台形などに整え、ア ーチ形状を連続体に近づけたりすることで、接触面積に よる影響を緩和することができるか今後調査していく。 そして各輪石の挙動を FEM で解析し、モデル化するこ とも視野に入れ研究を進めていく。

【参考文献】

- 北海道大学工学部 富家孝明:載荷経路が岩石の強 度・変形特性に及ぼす影響,卒業論文,pp4~62.
- 小玉齊明,藤井義明,赤川敏,幌延地環研石島洋二: 氷点下における数種の岩石の強度変化と諸物性値の 関係,pp65~66,2005.
- 3) 長谷場良二,鳥巣佳彦,吉原進:石造アーチ橋・西田橋の移設復元方針,土木史研究,第18号,pp351~362,1998年5月.
- 4) 長谷場良二,橋本孝,関晃,吉原進:石造アーチ橋・西田橋の復元と保存活用,土木史研究,第21号, pp247~256,2001年5月.
- 5) 山口祐造: 拱石橋の設計・施行要領,pp1~41,1994.
- 6) 川上寿,山崎芳樹,室井聖穂,坂田隆博:千鳥橋の設計と 施工,橋梁と基礎,第21号,pp23~29,1987年4月.
- 7) 日本材料学会:岩の力学,丸善株式会社,pp41~46.
- 8)日比野敏:技術者に必要な岩盤の知識,鹿島出版 会,pp4~46.