低降伏点鋼を用いた鋼斜張橋タワーの地震力低減に関する研究

Study on Reduction of Seismic Forces for Steel Tower of Cable-Stayed Bridge with Low Yield Steel

北海道大学大学院工学研究科 F 会員 林川 俊郎 (Toshiro Hayashikawa)
北海道大学大学院工学研究科 ○学生員 永田 克司 (Katsushi Nagata)
北海道大学大学院工学研究科 正会員 松本 高志 (Takashi Matsumoto)

1. はじめに

斜張橋は主桁、主塔、ケーブルから、構成され設計の 自由度が比較的高く、経済的な設計、合理的な架設や多 様な景観設計が可能、支間割の制約が比較的少ないとい った優れた構造特性を有する橋梁形式である¹⁾。しかし、 斜張橋はその複雑な構造形式から支間長が増大するにつ れ複雑な振動を生じるため、1995年の兵庫県南部地震 での被害状況を踏まえて改訂がなされた現行の道路橋示 方書では、斜張橋のような複雑な構造形式を有する橋梁 構造物に対しては動的解析を用いて耐震照査を行い、そ の結果を耐震設計に反映させることが望ましいとしてい る²⁾。

一方、兵庫県南部地震以前は構造物の剛性を高めるこ とで地震力に抵抗しようとする耐震設計手法が一般的で あった。しかし、想定される大地震動に対して構造物の すべての構成部材が健全性を維持できるような耐震設計 は容易ではないと今日では考えられている。現在では、 大地震後の構造物の構造安全性や使用性を確保するため に、主構造は健全な状態に維持し補修が比較的容易な 2 次部材のみに損傷を故意に集中させるというエネルギー 吸収機構を取り入れた設計法が主流となりつつある。

今回研究対象とする斜張橋は、レベル2地震動発生時 に耐震性能2を維持するためには、主塔の損傷を部材健 全度2に収めることが望ましいとされており³⁾、今後斜 張橋においてもこのようなエネルギー吸収機構を取り入 れた耐震設計事例が増加することが予想される。現在で は、構造物の力学的特性が十分に検討され、妥当性が検 証されている場合に限り上部構造に副次的な塑性化を許 容してもよいとされているが、そのような設計法につい てはいまだ確立されていないのが現状である。

そこで本研究は、実在する鋼製斜張橋タワーを3次元 立体骨組構造にモデル化し、損傷が生じても取替えが比 較的容易に行える水平梁をエネルギー吸収部材として考 え、水平梁への低降伏点鋼の使用が斜張橋タワーの大地 震時応答性状に与える影響を検討する。

2. 解析モデル

2.1 対象とした斜張橋タワー

本研究では、ファイバー要素により3次元骨組構造に モデル化されたたっぷ大橋の鋼製斜張橋タワーを基本モ デルとして用いる。タワー形状を図.1に示す。タワーの 寸法は、塔の高さ68m、塔頂部の塔柱間隔13m、塔基 部の塔柱間隔18m、水平梁は塔基部から高さ48mの部 分に取り付けられ、鋼材にはSM490Yが採用されてい る。このモデルを基本に、塔頂部の塔柱間隔を b として b=8.0m から b=18.0m まで 2.5m ずつ塔頂間隔を変化させ た計 5 種類のタワー形状を解析モデルとし、さらにそれ ぞれの解析モデルの水平梁の部分のみの鋼材を SM490Y、 SM400、LY100 と変化させて解析を行った。

一方、タワー断面には内部に垂直補剛材を用いた板厚 と外形断面が異なる変断面が採用されている。水平梁の 部分に限っては、高いじん性率を確保するために剛比の 高い縦リブ(補剛材剛比 γ/γ*>3.0)が採用されている。 タワー断面図は図.2、各断面寸法の詳細は表.1 の通りで ある。また、鋼製タワーの片側には9本のケーブルが定 着されており、解析ではそれぞれを水平ばね要素にモデ ル化している。補剛桁の死荷重についてはケーブルの定 着部に鉛直下向きに作用させている。なお、補剛桁から 斜張橋タワーに作用する慣性力は、補剛桁が橋脚によっ て直接支持されていることから無視する。

表.1 断面諸元(単位:cm)

C.S.		Outer dimension				Stiffener dimension				
Dim.		Α	В	t_{I}	t_2	а	b	<i>t</i> ₁₁	<i>t</i> ₂₂	
Tower parts	Ι	240	350	2.2	3.2	25	22	3.6	3.0	
	П	240	350	2.2	3.2	22	20	3.2	2.8	
	Ш	240	350	2.2	2.8	20	20	2.8	2.2	
	IV	270	350	2.2	2.6	31	22	3.5	2.4	

平成19年度 土木学会北海道支部 論文報告集 第64号

⁽b) ギャップ要素と地盤ばね 図.3 地盤構造のモデル化

2.2 地盤構造のモデル化

斜張橋では、橋脚と地盤間で生じる動的相互作用の影響が大きいため、橋脚部の地盤構造や地盤特性を無視で きない。そこで本研究では、地盤構造のモデル化として 骨組系ばねモデルにギャップ要素を加えたモデルを用い る。骨組系ばねモデルは、地盤と基礎構造物をばね-質 量からなる質点系で表現したモデルである。この骨組系 ばねモデルにギャップ要素を加えることで、基礎の真下 部分の地盤ばねの基礎に対する引張力を無効化する。骨 組系ばねモデル、およびギャップ要素について図.3 に示 す。各層の地盤構造を表現する地盤ばねのばね定数は、 図.4 に示される基礎に沿った地盤と基礎の真下の地盤状 態によって求めることとする⁴⁾。地盤特性のモデル化に は図.5 で示す Hardin-Drnevich モデル(HD モデル)を用 いている。HD モデルの骨格曲線は次式で与えられる。

 $\tau = G_0 \gamma / (1 + |\gamma / \gamma_r|), \qquad \gamma_r = \gamma_{\text{max}} / G_0$

ここで、 G_0 は初期せん断係数、 τ はせん断応力、 γ_{max} は最大せん断応力、 γ_r は基準ひずみ、 γ はせん断ひずみとする。また、履歴曲線は次式のように表される。

 $\tau \pm \tau_{\rm m} = G_0(\gamma \pm \gamma_{\rm m})/\{1 + |(\gamma \pm \gamma_{\rm m})/2\gamma_{\rm r}|\}$

ここで、(γ_m,τ_m)はカーブの折り返し座標とする。また、 地盤と基礎の動的相互作用は非線形ばねとダッシュポッ トによって表現される。

2.3 解析方法

本研究では、鋼材の降伏と幾何学的非線形性を考慮し たはり柱要素の有限要素法と Newmark β 法(β =0.25)お よび修正 Newton-Raphson 法を作用した解析手法を用 いた。弾塑性有限要素解析については、鋼材の応力ーひ ずみ関係をバイリニア型にモデル化し、降伏後の塑性域 のひずみ硬化を 0.01 としている。解析では SM490Y、S M400、LY100 の 3 種類の鋼材を用い、降伏応力をそれ ぞれ 355MPa、235MPa、100MPa とし、弾性係数は 200 GPa としている。解析では、すべての鋼断面に SM490Y を用いたモデルを Case1、水平梁のみに SM400 を用い たモデルを Case2、水平梁のみに LY100 を用いたモデル を Case3 としている。動的解析に用いた立体骨組モデル は1要素あたりの節点数2のはり柱要素により構成され、 鋼製タワーの要素分割数は 46 とした。鋼製タワーの減 衰には Rayliegh 減衰を採用し、減衰定数は 1 次固有振 動モードの面内・面外に対してそれぞれ 2%とした。入 力地震波には 1995 年1月の兵庫県南部地震における Ta katori 地震波の他に、1994 年 1 月のノースリッジ地震 (米・カリフォルニア州)における Rinaldi 地震波の計 2 種類の3成分加速度波形を採用した。各地震波の時刻歴 加速度成分を図.6 に示す。本研究では、N-S 成分を橋軸 方向に、E-W 成分を橋軸直角方向に入力した。

平成19年度 土木学会北海道支部 論文報告集 第64号

表.2 解析モデルの1次固有周期(単位:sec)

	b=8.0	b=10.5	b=13.0	b=15.5	b=18.0
H_1	1.845	2.062	2.128	2.153	2.809
L ₁	0.924	0.939	0.936	0.946	0.931
T ₁	0.728	0.762	0.800	0.824	0.834
V ₁	0.502	0.511	0.525	0.533	0.544

3. 数值解析結果

3.1 固有振動特性

固有振動特性を把握するために、householder 法を用 いて各解析モデルの固有周期を算出した。固有周期の算 出においては、重力加速度を $9.8m/sec^2$ 、鋼材の弾性係 数を 200GPa としている。各解析モデルの 1 次固有周期 の値を表.2 に示す。表中の H_1 は橋軸直角方向、 L_1 は橋 軸方向、 T_1 はねじり方向、 V_1 は鉛直方向の 1 次固有周 期をそれぞれ表している。これより、橋軸方向 L_1 は塔 がケーブルによって固定されているためにモデルの違い が 1 次固有周期に与える影響は小さくなっている。一方、 橋軸直角方向 H_1 、ねじり方向 T_1 、鉛直方向 V_1 は塔頂間 隔が広いモデルほど 1 次固有周期が長くなる傾向にある ことが確認できる。また、橋軸直角方向 H_1 は他と比較 して長周期であることも確認できる。

3.2 動的応答特性

(1) 水平梁端部・曲げモーメントー曲率関係

タワー水平梁端部における Takatori 地震波入力時の曲 げモーメントー曲率関係を図.7 に、Rinaldi 地震波入力 時の曲げモーメントー曲率関係を図.8 に示す。図.7、図. 8 はともに橋軸直角方向の曲げモーメントー曲率関係を 示している。Takatori 地震波入力時では、塔頂間隔が狭 いモデルほど大きな履歴ループを描き、また水平梁に降 伏点が小さい鋼材を用いた Case2 や Case3 ほど大きな曲 率をもつ損傷が生じていることが確認できる。Rinaldi 地震波入力時でも同様の傾向がみられ、各モデルにおい て Case3 で最も大きな曲率をもつ損傷が生じている。こ れより、水平梁端部が早期に塑性化することで大きなひ ずみエネルギー吸収が期待でき、水平梁がエネルギー吸 収部材としての役割を果たすものと考えられる。

(2) 塔基部・曲げモーメントー曲率関係

塔基部における Takatori 地震波入力時の曲げモーメン トー曲率関係を図.9 に、Rinaldi 地震波入力時の曲げモ ーメントー曲率関係を図.10 に示す。図.9、図.10 はとも に橋軸直角方向の曲げモーメントー曲率関係を示してい る。図.10 より、Casel ではどのモデルにおいても履歴 ループを描き、特に塔頂間隔が 13.0m 以上のモデルで は大きな履歴ループが確認できる。しかし、Case2 では どのモデルにおいても Casel に比べ小さな履歴ループと なっており、損傷が低減されていると考えられる。また、 Case3 ではどのモデルにおいても弾性領域内となってお り、健全性が維持されていると考えられる。以上のこと から、水平梁でのひずみエネルギー吸収の増大が塔基部 の健全性を維持するのに有効であると言える。

図.7 水平梁端部 M- φ 関係(Takatori)

図.8 水平梁端部 $M - \phi$ 関係(Rinaldi)

図.9 塔基部 M- φ 関係(Takatori)

図.10 塔基部 M- φ 関係(Rinaldi)

図.11 塔頂部時刻歴応答変位(Takatori)

図.12 塔頂部時刻歴応答変位(Rinaldi)

(3) タワー塔頂部応答変位

塔頂部における Takatori 地震波入力時の時刻歴応答変 位を図.11 に、Rinaldi 地震波入力時の時刻歴応答変位を 図.12 に示す。図.11、図.12 はともに橋軸直角方向の応 答変位を表している。まず Takatori 地震波入力時には、 どの塔頂間隔のモデルにおいても Case1 と Case2 の最大 応答変位や応答振幅に大きな違いは見られないが、Case 3 では全体的に応答振幅が低減されていることが確認で きる。また、Case2 の b=8.0 と b=10.5 では特に大きな残 留変位が生じることも図から確認できる。これは、水平 梁の端部で大きな履歴ループを描き残留ひずみを生じて いることが原因であると考えられる。

一方、Rinaldi 地震波入力時でも Takatori 地震波入力 時と同様に Case1 と Case2 の応答変位には大きな違いは 確認できないが、Case3 では応答変位が低減されている ことが確認できる。また、Case1 では塔基部での塑性化 の影響を受け b=13.0、b=15.5、b=18.0 の場合において残 留変位が生じている。Case2 でも b=8.0 の場合を除いて は残留変位が生じているが、これらは水平梁端部での塑 性化が原因であると考えられる。しかし、これらの残留 変位が生じたモデルの中で、道路橋示方書で規定される 残留変位の許容値 h/100(h:塔高)を越えるような場合はな いので、斜張橋タワーの地震後の使用性に大きな影響を 与えるものではないと考えられる。

以上のことから、水平梁端部で大きな残留ひずみをも つような塑性化が生じる場合においては、塔頂部で大き な残留変位を引き起こす可能性があると言える。今回の 解析では、水平梁に LY100 を用いた Case3 の場合には 目立った残留変位は生じていないが、LY100 は普通鋼と 比較して変形性能の大きい鋼材であり、それゆえに地震 波の性質によっては大きな残留ひずみが発生すると予想 されるため、塔頂部で大きな残留変位を引き起こす可能 性がないとは言えない。

4. まとめ

本研究では、たっぷ大橋の鋼斜張橋タワーを基本モデ ルに、塔頂間隔を 2.5m 間隔で変化させた 5 種類のモデ ルに対して非線形動的解析を行い、水平梁に SM400 や LY100 を採用し水平梁をエネルギー吸収部材とした場合 のタワーの地震応答性状について比較検討を行った。

水平梁端部の曲げモーメントー曲率関係については、 水平梁に SM400 あるいは LY100 を用いた場合で特に大 きな履歴ループを描くことが確認された。これにより、 水平梁がエネルギー吸収部材として大きなひずみエネル ギー吸収を行うことが期待できる。ただし、水平梁をエ ネルギー吸収部材とした場合であっても、水平梁は塔の 主構造の一部分であるため、塔全体の構造安全性を損な うに至るような大きな損傷の発生は避けるように水平梁 の設計を行わなければならないと考えられる。

塔基部の曲げモーメントー曲率関係については、水平 梁にLY100を用いた場合では、Takatori 地震波、Rinaldi 地震波のどちらを入力した場合でもすべてのモデルで弾 性領域内となることが確認された。これより、水平梁で の大きなひずみエネルギー吸収が塔基部の地震後の健全 性の維持に効果があると言える。

塔頂部の応答変位については、水平梁に SM400 を用 いた場合では応答変位の低減効果は小さいが、LY100 を 用いた場合では振幅が全体的に低減されることが確認さ れた。ただし、モデルによっては水平梁端部や塔基部の 塑性化の影響を受けて残留変位を生じる場合がある。塔 頂部で残留変位が生じるかどうかは地震波の性質による ところが大きいため、複数の地震波を採用して解析、照 査を行うのが望ましいと思われる。

参考文献

- 1) 林川俊郎、橋梁工学、朝倉書店、2000.4
- 日本道路協会、道路橋示方書・同解説、V耐震設計 編、2002.3
- 3) 鋼橋の耐震・制震設計ガイドライン、技報堂出版、 2006.9
- 日本道路協会、道路橋示方書・同解説、Ⅳ下部構造 編、2002.3