寒冷地における橋梁用ゴム支承の性能評価実験(その2)

The performance evaluations of rubber bearings for bridges in cold districts(2)

ゴム支承協会	正員	今井	隆(Takashi Imai)
土木研究所寒地土木研究所	正員	佐藤	京(Takashi Satoh)
ゴム支承協会	正員	西村貴明(Takaaki Nishimura)	
ゴム支承協会	正員	田中弘紀(Hiroki Tanaka)	
土木研究所寒地土木研究所	正員	三田村	浩(Hiroshi Mitamura)

1. はじめに

橋の耐震性能の向上を担う積層ゴムは一般的に温度依 存性があることが知られている.

特に低温下での性能変化は橋の耐震性能に影響を与え る可能性があることから,極低温下に関する性能変化に 関する実験を行った.実験の目的及び概要は平成18年 度報告集(A-22)¹¹⁾を参照されたい,ここでは,実験の結果 について報告する.

実験は,ゴム支承協会会員が製造している天然ゴム系 積層ゴム(RB),鉛プラグ入り積層ゴム支承(LRB),高減 衰ゴム支承(HDR系)を用い,超低温下(-30)の実験が可 能な試験機能力及び道路橋支承便覧参考資料²⁾,及び ISO22762-1³⁾の中から供試体サイズを選定した.

2.実験の概要

北海道の一部地域のように気温が-30度となる地域を も考慮し、供試体の特性評価試験温度は-30 ~+40 (国 内一般には-10 ~+40)の範囲とした.試験機-A(写真 -1)では供試体を低温室で指定温度にした後(8~24 時間 程度以上)温度+23 で管理した試験室で実験を行う.試 験機-B(写真-2)は供試体及び低温室内の温度を-30 ~ +40 で実験を行う2つの方法で実施した.試験方法の 違い及び試験機の差は機差確認供試体を用いて補正した. (1)供試体の構造

平面寸法及び積層構造は図-1 に示す 240mm×ゴム 層(5mm×6層)とした.ゴムの種類及び供試体数はG12 を28個(試験機 A:21個 試験機 B:7個) G10は14個(試 験機 A,B 各 7個)実験した.

(2)試験温度

実験は低温から順に高温に行った(-30 -20

-10 +23 +40).供試体の内部温度と試験温度が 同じであることの確認のために低温室に内部温度測定用 の 240mm のダミー供試体の内部に熱電対を埋め込み 供試体の温度計測を行い,供試体内部温度が試験温度と なった際に実験を開始した.その温度差は±0.2 程度で あった.

(3)試験条件

温度依存性試験は,圧縮応力度 6N/mm²,せん断ひずみ は(±53mm)加振振動数 0.5Hz(16.5kine)における等価剛 性,等価減衰定数を計測する.

供試体組込み状況

写真-1 試験機-A

写真-2 試験機-Bと低温試験室

図-1 供試体の構造図

更に,積層ゴムの速度・変位量などの依存性などの構成則の開発を目的とし,リラクゼーション試験を各種のゴム支承1個(23)で実施し,超弾性モデル^{6),7)}と試験結果から解析のためのモデルの構築のための実験を行った.

3.試験結果

試験機-B による,一般的な RB の-30 と+23 の履歴 の一例を図-2 に示す.明らかに低温では剛性が大きくな る.RB に関しては元々減衰定数が小さい(5%程度)ため 減衰定数が比較的大きくなっている 図-3 は RB LRB, HDR の等価剛性と等価減衰に関する温度による変化率 を示す.

図-2 RB の-30 , +23 履歴図(試験機-B)

補正無し減渡

b)等価減衰の変化率

LRB1

G12 対数3

試験機-B a)剛性の変化率 b)等価減衰の変化率 図-3 積層ゴム支承の温度依存性の傾向

図-4 試験機-Aと試験機-Bの差

試験機-A に比べ,試験機-B では,-30,-20 におけ る等価剛性の変化率が大きいことが分かった.+23 に 対して,-30 における等価剛性の変化率は試験機-A と 試験機-B では,最大25%程度差が生じた.

4.ゴム支承内部温度の測定

(1)試験方法

試験機-A と試験機-B の剛性変化率の差が生じる原因 を追究するため,RB,LRB,HDR 各1個を用い,ゴム 支承本体の内部及び冶具や試験機の温度変化を測定する. また,等価剛性や等価減衰がどのような変化するのかに ついて確認実験を行った.温度条件は-30 ,-20 , +23 の3パターンとした.

実験の手順を図-6 に示す.供試体及び冶具,試験機な どの温度測定箇所を図-5 及び写真-3 に示す 試験は試験 機-A で行った低温槽から移動し実験開始までの時間(約 15分,900秒程度)とし,移動中から実験終了後約5分 程度まで各部位の温度を連続的に計測した.

熱電対配置

写真-3 試験機 B2 上

図-5 熱電対配置

四-0 武殿の子

(2)各部位の温度測定

供試体および低温室-30 の室内試験と供試体温度が -30 で室温試験機における各部位の温度変化について RBの結果を図-7,図-8,図-9,図-10に示す.LRB及 びHDRに関しても加振時の発熱温度の絶対値を除き温 度上昇の傾向は同じであった.

図-7 はゴム支承最深部の温度を示し,低温室を開けた

瞬間に空気中の水分が霧状となったことにより一旦温度 が下がる(気化熱による影響と思われる)が,試験開始及 び試験中の温度上昇は低温室内試験との差は小さい.試 験後にやや室温側に上昇する傾向があるが,大きな変化 は無かった.低温室の場合は-30 に向かって温度が下が る.なお,RB実験時の室内温度は+23.8 であった.

図-8は,ゴム支承の表面近くの温度を示し,低温室から供試体を出した時点から緩やかに温度上昇し,加振後は室温に影響を受けていることが分かった.低温室内の場合は室温-30 に向かって冷えていくことが分かる.

図-9は、ゴム支承上下面と取付けプレートの接触面の 温度を示し、低温室開放からフォーリリフトの爪が接触 した瞬間に上昇し、移動中、更に試験機-B2に設置した 瞬間に急激な温度上昇が起こることが分かった。

図-10 は供試体取付け用の鋼製冶具の温度を示し,図-9とほぼ同様の傾向を示す.

低温室内の試験では図-9,図-10の部位に関しては試 験中の温度上昇に関しては RB の場合見られない(LRB 及び HDR の場合は発熱量が多いのでやや上昇したが温 度変化は小さい).低温室内では加振により発生するゴム 支承の発熱量程度では鋼板の温度上昇に影響しないこと が分かった.

図-7 ゴム支承最深部の温度

図-10 供試体取付け用鋼製冶具の温度

(3)性能試験結果

供試体の温度条件を同じとした低温室内試験と低温室 外試験を比較すると,室外試験を終了するまでの15分 程度の間にゴム支承最深部の温度上昇はあまり見られな いが周辺からの温度影響によりゴム支承の性能変化が見 られた.図-11にRBの低温室内試験(-30)と低温室外 試験(+23.8)の1波目,5波目の履歴を示す.RBの場 合はLRB及びHDRに比べて温度影響は少ないが明らか に1波目,5波目いずれの場合も,低温室外実験の場合 に等価剛性が小さい.LRB及びHDRについても同様の 結果であった事から,超低温で行う室外試験の場合に試 験機及び治具などの鋼材の温度がゴム支承に供給される ために低温室で設定した温度よりやや暖まった温度条件 の性能試験を行っていると考えられる.

これらを踏まえ,低温室外試験における等価剛性及び 等価減衰定数を低温室内試験の値に対する補正を検討し た.

図-11 RBの低温室内と低温室外の履歴図(-30)

(4)試験機-Aのデータ補正

低温室内と低温室外試験における等価剛性の差を図 -12 に,等価減衰定数の差を図-13 に示す.内部温度測定 に用いた供試体は RB, LRB, HDR 各1 個であるため, 試験機-A で実施した各種別6 個を図-12,図-13 に基づ き補正したものを図-14,図-15 に示す.

図-16,図-17 は試験機-B を含む支承種個別(1 種別 4 個,G12)の等価剛性および等価減衰定数に関する温度依存性を示す.なお,本報告は供試体 240mm に対する超低温度に関する傾向を整理したものである.

平成19年度 土木学会北海道支部 論文報告集 第64号

図-12 等価剛性の補正倍率

図-13 等価減衰定数の補正倍率

図-14 等価剛性の支承種別の補正式

図-15 等価減衰定数の支承種別の補正式

図-16 各支承別等価剛性の温度依存性

図-17 各支承別等価減衰定数の温度依存性

5.まとめ

積層ゴム支承の超低温下における性能変化に関する実 験を行い次のような結果を得た. 積層ゴム支承は超低 温下の剛性は高くなるが、等価減衰定数の変化は小さい.

等価剛性と等価減衰定数の変化率は比例しない. 水 平加振回数によって履歴が大きく変化するゴム支承の依 存性評価は回数依存性を考慮した妥当な回数(3又は5回 目)で評価する必要がある. 加振1波目の剛性変化は大 きい. 超低温での試験は 試験装置の温度が影響する.

超低温で行う試験装置の温度管理基準が必要である. ゴム支承の超低温下の特性評価方法の確立と言う観点からは,大型供試体(400mm⁴)等による実験結果が必要と思われるが,これらについては,今後の課題とした.

なお,本実験は個別の支承種類や製造会社の優劣を判 定するために行ったものではないことに留意されたい.

参考文献

1)今井,佐藤,西村,田中,三田村:寒冷地における橋梁 用ゴム支承の性能評価実験,平成18年度土木学会北海道支 部論文報告集第63号

- 2)日本道路協会:道路橋支承便覧、丸善、2004.4
- 3)ISO 22762-1 Elastomeric isolators-Part1:Test methods, 2005
- 4)日本道路公団:ゴム支承の特性に関する試験方法
- (JHS418:2004) 日本道路公団試験方法、2004