遠心模型による岩盤崩落実験の模型縮尺の影響について

Influence of model scale in sudden fall of bedrock experiment with centrifugal model

(独)土木研究所寒地土木研究所	正	員	日下部祐基(Yuki Kusakabe)
豊橋技術科学大学	正	員	三浦 均也(Kinya Miura)
(独)土木研究所寒地土木研究所	ΤĒ	員	伊東 佳彦(Yoshihiko Ito)
(独)土木研究所寒地土木研究所	ΤĒ	員	石川 博之(Hiroyuki Ishikawa)
(独)土木研究所寒地土木研究所	ΤĒ	員	表 真也(Shinya Omote)

1. まえがき

北海道では、1996年の豊浜トンネル崩落事故以降も大 規模岩盤崩落が発生しており、国民の生命・財産を脅か すとともに公共構造物に多大な被害を与えている。特に 北海道の日本海沿岸にある多くの急崖斜面は、溶岩が水 中で急激に冷やされてできた水冷破砕岩で構成されてい る。水冷破砕岩は、亀裂が少なく均質ながらも脆さを有 した岩盤と言われている。このような急崖斜面では、な んらかの要因で亀裂が進展すると、斜面背面に潜在する 亀裂が拡大して連結し、比較的大規模な崩落に発展する 可能性がある。このことから、亀裂の進展と岩盤斜面の 安全性評価の関係を岩盤力学的観点から研究することが 重要と考える。

著者らは大規模岩盤崩落に関連する亀裂進展の機構を 明らかにするために、一連の遠心力模型実験を実施¹⁾²⁾³⁾ してきた。前回では、これまでの研究成果をもとに遠心 力模型実験を用いた岩盤斜面の安全率評価法を提案⁴⁾し た。ここでは、安全率評価法に用いる遠心模型について、 遠心力模型実験の原理である相似則を検証するために、 模型縮尺の違い(modeling of models)が実験結果に与える影 響を調査したので報告する。

2. 実験概要

本研究で用いている遠心力載荷装置⁵⁾は、前回の報告 で示したものと同様である

遠心力模型実験は、表-1 に示すように供試体サイズと して一辺が 300,450,600mm の立方体にして各 2 供試体 の計 6 ケースの実験を行った。各模型縮尺は、一辺が 300mm の供試体を基準にすると、1.5 倍と 2.0 倍の実験条

実験番号	供試体サイズ (mm)	亀裂進展長 L (mm)	縮尺
S-1	300	120	1.0
S-2	300	120	1.0
S-3	450	180	1.5
S-4	450	180	1.5
S-5	600	240	2.0
S-6	600	240	2.0

表-1 実験ケース

図-2 切欠き部材の形状・寸法図

件としている。図-1 に 300mm 供試体の形状および計器配 置図を示す。実験で用いた計測器は、供試体の変形量を 計測するレーザー変位計、および供試体表面のひずみを 計測するストレインゲージである。供試体には、既存亀 裂とした切欠きを図-2 に示す塩ビ板で作成して配置した。

供試体の材質は、目標強度等を設定して配合したセメ ントモルタルである。目標一軸圧縮強度を 20.0N/mm²とし て、セメント材料は高炉セメント B 種、セメント砂比 =1:4、水セメント比=0.65 で配合した。実験後、供試体か らコア試料を採取して一軸圧縮試験、圧裂引張試験およ び1供試体で三軸圧縮試験を実施し、供試体の力学特性 を求めた。

また、供試体の破壊時に生じる亀裂の進展状況を観察 するために、切欠き先端部を撮影するCCDカメラを取 り付けた。遠心力模型実験は、制御パネルおよびパソコ ンのモニターを確認しながら、基本的に遠心加速度を所 定の値まで 5~10g(想定破壊加速度の 70%まで 10g ステ ップ、以後 5g ステップ)のステップで徐々に増加させ、 ひずみの増加傾向等を観察した。ひずみ値が急変した場 合は載荷加速度を一定に保ち、ひずみがクリープ的に増 加していないことを確認した場合には、次の加速度段階 に移行した。

3. 実験結果と考察

遠心力模型実験中に計測された供試体のひずみの経時 変化の1例として、図-3に実験 No.S-2の測定結果を示す。 ここで示したひずみゲージの貼付位置は、塩ビ板で作成 した切欠きの先端近傍で、測定方向が進展亀裂面に垂直 方向にしたもの(CH2,CH14)と鉛直方向にしたもの (CH1)である。ひずみ値は、供試体の破壊直前に垂直 方向にひずみ値が増大し、面に平行な方向にはほとんど ひずみが発生していないことがわかる。このことから亀 裂進展面には、せん断ではなく曲げ引っ張りによる破壊 が卓越していると推測される。

実験後の供試体破壊状況の 1 例として、写真-1 に実験 No.S-1 の破壊状況を示す。破壊亀裂線は亀裂面を水平に してみると、側面では上側に凸の曲線状になっているが、 内側ではほぼ直線上になり、単純な平面にならないこと

図-3 切欠き先端近傍のひずみの経時変化

写真-1 供試体破壊状況

が確認された。これは、破壊亀裂が供試体内の強度の小 さいところに進展して行くためと考えられる。また、表 面を観察した結果、破壊面に擦れた形跡が無いことから、 破壊形態がせん断破壊でないことが推察された。

表-2 に各実験ケースの破壊加速度と供試体の力学特性 とした各種室内試験結果を示す。今回の実験の主目的で ある遠心力模型実験の相似則を検証した実験としては、 これまでに粘土斜面の安定実験⁶⁰や軟弱粘土の自重圧密⁷⁾、 地盤の支持力実験⁸⁰等がある。本研究の課題の1つであ る岩盤斜面の安定問題を考えると、粘土斜面の安定実験

С

(N/mm²

24 3

26.8

19.5

20.5

18.3

17.4

破壊加速度 実測値

nf(g)

80

80

37

48

32

31

実験番号

S-1

S-2

S-3

S-4

S-5

S-6

湿潤密度

g/cm³

2 256

2.227

2,162

2.201

2.206

2,211

(3)

が挙げられる。この実験では、 斜面勾配を一定にして斜面高 さを変えた遠心力模型実験を 行って破壊加速度を求め、破 壊時の実斜面換算高さ(=模 型斜面高さ×破壊加速度)を 示している。相似則が成り立 つ条件としては、模型斜面高 さを変化させても、実斜面換 算高さが一定になるというも のである。

本実験結果を用いて、この 条件を検討した。図-4 に模型 サイズ(斜面高さL)とこれに 実測破壊加速度を掛けたて求

めた実斜面換算高さの関係を示した。この関係では、模型サイズが大きいほど実斜面換算高さが小さくなる傾向 がみられる。この原因の1つには、模型供試体に作用す る遠心加速度の半径の違いによる誤差が考えられる。実 測破壊加速度は遠心載荷装置の有効最大半径 3.5m 位置で の値である。供試体に作用する遠心加速度は、供試体内 で半径が異なることから変化する。

そこで、同図に供試体の重心位置の遠心加速度に補正 して実斜面換算高さを示した。この関係においても、実 測破壊加速度を用いたときと同様に、模型サイズが大き いほど実斜面換算高さが小さくなる傾向がみられる。そ こでさらに原因を考察すると、表-2 にみられるように各 供試体の引張強度や単位体積重量が異なっていることが 考えられる。この補正方法としては、以下に示す曲げモ ーメントによる引張破壊を仮定した極限つりあい式を用 いて行う。

起動モーメント	$\mathbf{M}_{\rm d} = \frac{\mathbf{L}\mathbf{H}^2\mathbf{B}}{8}\gamma_{\rm t} \cdot \mathbf{N}_{\rm f}$	(1)
	2	

抵抗モーメント
$$M_t = \frac{x^2 B}{6} \sigma_t$$
 (2)

 $N_{f} = \frac{x^{2}B}{6} \cdot \frac{8}{LH^{2}B} \cdot \frac{\sigma_{t}}{\gamma_{t}}$

ここに、L:供試体長 H:供試体高 B:供試体幅 x:亀裂進展長 N_f:破壊時遠心加速度(g) ,:引張り 強度 ,:単位体積重量 (L=H=B)(図-5参照)

(3)式において、破壊時遠心加速 N_fには引張強度 _tと 単位体積重量 _tが関係するが、これらの値が各実験ケー スで異なる。そこで、各値の基準値を設定して実測値と の比を求める。引張強度の基準値 _sには、目標一軸圧縮 強度の $1/10(=2.0N/mm^2)$ として供試体の実測引張強度 _tとの比を (= _t / _s)、単位体積重量の基準値 _sに は実測単位体積重量 _tの平均値(湿潤密度 _tより求め る。平均値= $2.2g/cm^3$)を用いてその比を (= _t / _s) とすると以下の式が得られる。

0.30 1.07×10^{4} 0.208 1.62 0.17 1.78×10^4 0.240 1.78 0.16 0.196 1.69 4.33 $2\ 21 \times 10^4$ 0.31 0.190 1.61 9.86×10^{3}

0 224

0.230

€験後抜き取り試料

E509

 (N/mm^2)

 1.61×10^4

 1.50×10^4

ソン比 引張強度

 (N/mm^2)

2 10

2.24

強度定数

(度)

35.0

Cuu

<u>(N/mm²</u>

図-4 切欠き先端近傍のひずみの経時変化

破壊加速度

N

 $N_{f} = \frac{x^{2}B}{6} \cdot \frac{8}{LH^{2}B} \cdot \frac{\alpha\sigma_{s}}{\beta\gamma_{s}}$ (4)

$$I_{f} \frac{\beta}{\alpha} = \frac{x^{2}B}{6} \cdot \frac{8}{LH^{2}B} \cdot \frac{\sigma_{s}}{\gamma_{s}}$$
(5)

上式により各実験ケースの破壊加速度 N_f に と の比 を掛けることにより、引張強度と単位体積重量を基準値 に置き換えた時の値が求められる。この補正破壊加速度 に模型サイズを掛けると引張強度や単位体積重量の違い を補正した実斜面換算高さが求められる。図-4 には、補

表-2 実験結果表

・軸圧縮強度 破壊ひずみ 静弾性係数ポフ

(%)

0 24

0.29

正した値を全補正として示した。多少のバラツキはみら れるものの、実斜面換算高さは 21.0m 程度に収束してい ることがわかる。この結果から岩盤斜面の遠心力模型実 験は、相似則を満たしていることが推察され、遠心模型 により実斜面の安全率を評価する手法の妥当性が検証さ れた。

図-6 は、(3)式で求めた破壊加速度の計算値と実測値お よび実測値の重心位置補正をした値との関係を示したも のである。各値には良い相関が認められることから、こ の結果からも模型縮尺の破壊加速度への影響は少ないと 考えられる。特に実測値を重心位置に補正することによ り、破壊加速度を理論計算値に近づけることができ、遠 心模型による岩盤斜面の安全率評価法の精度向上が期待 できる。

4. まとめと今後の課題

以上をまとめると次のとおりである。

 実験中に計測された供試体のひずみの経時変化から、 破壊形態が崩落部位の曲げ引っ張りによることが推測さ れた。

2) 実験後の供試体破壊状況を観察した結果、破壊面に 擦れた形跡が無いことから、破壊形態がせん断破壊でな いことが推察された。

3) 模型縮尺を変化させた実験結果により、岩盤斜面の 遠心力模型実験は相似則を満たしていることが推察され、 遠心模型により実斜面の安全率を評価する手法の妥当性 が検証された。

(4) 実測破壊加速度を重心位置に補正することにより、 破壊加速度を理論計算値に近づけることができ、遠心模 型による岩盤斜面の安全率評価法の精度向上が期待でき る。

5. あとがき

ここでは、前回提案した遠心力模型実験を用いた岩盤 斜面の安全率評価法について、相似則を検証する基礎的 な実験を行った。その結果、模型縮尺が実験結果に大き く影響しないことが判明した。このことは、本評価手法 が実斜面の安全率を求める手法として妥当性があること を示唆したものと考える。

今後、複雑な 3 次元模型についても検討して、本手法 の精度向上を図る所存である。

参考文献

- 日下部祐基・池田憲二・渡邊一悟・三浦均也 (2002): 切欠きを有する岩盤の遠心力場における崩落実験,地 盤工学会,第 47 回地盤工学会シンポジウム論文集, pp.327-334.
- 2) 日下部祐基,三浦均也,池田憲二,渡邊一悟(2004): 切欠きを有する模擬岩盤の崩落に関する遠心力載荷実験,土木学会,第33回岩盤力学に関するシンポジウム論文集,pp.57-64.
- 3) 日下部祐基・三浦均也・石川博之・伊東佳彦・國松博 ー(2005):切欠きを有する三次元岩盤の遠心力場にお ける崩落実験,地盤工学会,第 50 回地盤工学会シン

図-6 破壊加速度の計算値と実測値

ポジウム論文集,pp.355-362.

- 4)日下部祐基・石川博之・伊東佳彦・國松博一・三浦均 也・上堂薗四男・只野暁・山本真裕・中田賢(2006): 遠心力模型実験による岩盤斜面の安全率評価法,土木 学会北海道支部,論文報告集第62号
- 5) 日下部祐基,池田憲二,畑山朗,渡邊一悟,三浦均也 (2003):切欠きを有する模擬岩盤の遠心力載荷装置を 用いた崩落実験,地盤工学会北海道支部,技術報告集 第43号, pp.153-160.
- 6) 竹内功,高田直俊:遠心模型実験による粘土斜面崩壊の相似則,1986
- 7) 三笠正人,高田直俊:遠心力装置による自重圧密実験 (第3報),第21回土木学会年次学術講演会概要集, pp46/1~2,1966
- 4) 山田孝治,佐藤完二,柚木裕二:遠心力装置によるフ ーチング引揚実験,第 39 回土木学会年次学術講演会 概要集,,pp.323~324,1984